Plant Metabolomics

Vicki Maloney

The publishing of complete genome sequenceshas
given genetics a huge boost and we are fortunate
enoughto have an excedlent understanding of thegene
to protein link. Neverthel ess, our understanding of
plant systems often stumbles in the gap between
proteome and phenotype. We can look at what genes
are being expressed, and what proteinsare present,
but what, for example, causes certaintreesto produce
more cellulosethan others? Or why doesaparticular
mutant plant only grow half astall? M etabolomics
attemptsto answer these questions.

Inthe sameway asthegenomeisall thegenetic
information in a plant, and the proteomeisall the
proteins, the “ metabolome” isall the metabolites:
metabolomicsisthe study of all thechemicalsina
plant that have alow molecular weight. Metabolites
aretheend productsof cellular functions, and their
levels can be viewed as the response of biological
systemsto environmental or genetic manipulation?.
Thesechemicasareintegra to abetter understanding
of plant functions, boththeeveryday lifeof a“norma”
plant, and behavior of aspecid plant obtained through
classical breeding, mutation, or other manipulation.

Plantsreact to any changein their surroundings. If
abird percheson aleaf, theleaf needsto adjust its
photosynthetic pathway to copewith darkness (and
subsequent locd nitrogen overload if thebird remains
for any length of time). If afungusattacksaleaf, the
leaf will resst itsattack. Inboth cases, everything the
plant does can befollowed by looking at the changes
inthelow molecular weight chemicals. Metabolites
represent the catabolic and anabolic activitiesbeing
performed by proteins at any given time. Within
gpeciesor organisms, Snglenuc eotide polymorphisms
canresultinsmall changesintheactivity andlevel of
expression of encoded proteins. The cascading effect
beginswith amodified genome, leading to modified
proteins, and consequently, achangein the pattern
and/or concentration of metabolites. Therefore,

changesin the genotypewill be manifested through
an observed changein metabolome?. Quantitativeand
qudlitative measurementsof largenumbersof cellular
metabolites provide abroad view of thebiochemical
status of an organism, which can then be used to
monitor and assessgenefunction®. If onehasaplant
that isgenetically different— perhapsamutation or
the product of abreeding program- thenitsbasd levels
of metabolitesand how it reactsto the environment
will bedifferent. Studiesof metabolomicsareaimed
at linking these differencesto thegenetic differences
that caused them, however indirectly. Linking the
genome and the proteometo the metabolomeisone
of the mgjor interests of modem plant science. The
chdlengesarefirs how tomeasured| thesechemicas
simultaneously, and second, how to make sense of
thevast amount of measurements.

Thedevelopment of metabolomics

M etabolomicsdevel oped frommetabolic profiling.
In the early 1970's Gas Chromatography - Mass
Spectrometry (GC-MS) technol ogieswere used to
andyzeseroids, acids, and neutral and acidic urinary
drug metabolites*>®, Soon afterwards, the concept
of using metabolic profilesto screen, diagnose, and
access hedlth began to spread”®. Metabolic profiling
research remained stable in the 1980’s with
approximately 10to 15 publicationsayear. Withthis
increasein publicationscameadivergenceintheuse
of the new technology. However, it was not until the
early 1990’ sthat metabolic profiling wasfirst used as
adiagnogtictechniquein plant systems’.

Attheturn of thecentury, many genomesequencing
effortswereunderway or near completion, andit soon
became clear that alarge number of the genesthat
were being sequenced could be assigned a
function'®™t, It then became apparent that acloser
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Figurel. AnNMR spectraof methyl propanoate. The structure of each peak isdetermined by
interferencefrom hydrogens on nei ghbouring carbons.

study of proteins (proteomics) might also be an
effective meanswith which to study genefunction.
Whileit did not happen immediately, thisthought
processeventualy trickled downto the consderation
of themetabolome®. Researchersat theMax Planck
Ingtitutein Germany (Trethewey, Willmitzer, Fiehn,
Femie) then pioneered thisapproach for plantsbased
onthemethods described by Sauter®. Sincethen, the
number of academic and commercid groupsusingand
entering thisfield hasgrown exponentialy.

M etabolomictechnologies

Themetabolomeisvery diverse. Itincludeslipid
soluble chemicals that are normally found in
membranes, polar chemicalsfrom aqueous parts of
thecell, acidic and basicions, stable structuresand
structuresthat oxidize at the dightest mistreatment.
Until auniversal measuring machine materializes,
anyoneworking in metabolomicswill haveto make
compromises. Anextraction method and machinemust
be carefully chosen to suit particular interests. The
typical equipment used includes nuclear magnetic
resonance (NMR)3435 fourier transforminfrared
(FT-IR) spectroscopy®'’ and mass spectrometry,

often combined with chromatography?3819,
Chromatography and Mass Spectrometry

Themost widdy used and powerful methodsused
to profilelow molecular weight chemicalsare based
on chromatographic separation, followed by detection
and validation by mass spectroscopy. Theseinclude
gas chromatography mass spectroscopy (GC-MS)
and more recently, liquid chromatography mass
spectroscopy (LC-MS) 2. GC-MSand LC-MSin
combination are able to detect several hundred
chemicals, including sugars, sugar acohols, organic
acids, amino acids, fatty acidsand awiderange of
diverse secondary metabolites**2t, GC-MSand LC-
MSareespecially useful in differentiating chemical
isomerssuch asthose of common hexoses, which al
have the same mass®>. While GC-MSisalow cost
alternativeto some other metabolomic technologies
and provideshigh separation efficiencies, it requires
that samplesbevolatile. Thisrequirement isreadily
accomplished by chemica derivitization, but a thecost
of additional time and variance. In LC-MS a
derivitization stepisnot essentia , and selection of the
compound comesfrom either the extraction method
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or the type of column used. However, LC-MS
profiling methods all rely to great extent on
comparisonswith reference compounds. Often one
is able to identify the class of compounds the
metabolite belongsto, but not itsexact identity.

Nuclear magnetic resonance

NM R methods providemetabolitefingerprintswith
good chemica specificity for compoundscontaining
elementswith non zero magnetic moments, such as
1H, 3C, N, and **P which are commonly foundin
most biological metabolites®. However, *H NMR
spectraof plant extractsareinevitably crowded not
only becausethereisalarge number of contributing
compounds, but also because of the low overall
chemical shift dispersion (chemical shiftiscaused by
the chemistry around the nucleus changing its
resonance). Increased specificity and resolution can
be achieved by using higher magneticfields. Thus,
NMR spectraof unpurified solvent extractsof plants
has the potential to provide arelatively unbiased
fingerprint, containing overlapping signals of the
maj ority of the metabolitespresent in the solution.

Fourier transform infrared spectroscopy

Fourier transforminfrared (FT-1R) spectroscopy
primarily measuresvibrationsof functiona groupsand
highly polar bonds. These (bio)chemicd ‘fingerprints
are made up of the vibrational features of all the
sample’'scomponents. FT-IR spectrometersrecord
the interaction of IR radiation with experimental
samples, measuring the frequencies at which the
sample absorbstheradiation and theintensgitiesof the
absorptions. Determining thesefrequenciesallows
identification of thesample'schemica makeup since
chemical functional groupsareknownto absorb light
at specific frequencies'®’. However, thereisalack
of differentiation betweenisomers, and the presence
of fragment and adduct ions and problems of
quantification caused by ion suppress on maketheuse
of powerful classification tools essential. The
combination of FT-MS data with other
chromatographic MSdatais potentia ly powerful 2.,

Metabolomic analysis

Currently, there is no method to extract all
metabolitesand measurethem all. Additionally, there
isawaysarisk that somemetaboliteswill belost dong
theway?*24%, Nevertheless, advancesin technology
now allow much larger rangesto be measured than
ever before. These advancesin technology makeit
necessary toimprovebioinformaticsand datahandling
methods:. thereisno point in collecting numbersif we
can not process them meaningfully. While
metabolomicsisgill initsinfancy, thereareanumber
of bioinformaticstools currently being used, and a
number in development. Thesetoolsareusedtoalign
chromatographic dataand differentiate components
inlarge datasets.

Correlation optimized warping (COW)

Until recently, most analysis of metabolomic data
was performed on reduced data sets using areas of
selected peaks detected in the chromatograms. We
look at a pathway and guess what should have
changedinit when the plant was subject to some sort
of manipulation. Of course, the plant often has
compensated for theorigina changein someway, and
the changeswe see are often very different fromwhat
weexpect. Significant changesmay occur in pathways
and processes quitefar from wherewewerelooking.
Thisiswhere a broader approach pays off; if we
only measurethe metaboliteswherewe expect to see
achange, we may end up with uninterpretable data
and have noideawhat happened, becausewe missed
the true consequences of what was going on. This
reductionin dataset size dsointroduced the problem
of extracting specific peak data from each
chromatogram. Thesedisadvantagescan beovercome
by using the entire dataset that isgenerated fromthe
chromatographic and/or spectroscopicinstruments,
but, assmdl unavoidabledifferencesin experimental
conditionscan cause changesand driftin peaks, itis
necessary toaignall of the peaks.

Thereareanumber of approachesthat have been
formulated to tacklethis problem.?2” Unfortunately,
they still failed to use the entire datamatrix or still
relied on preprocessing and peak detection. COW
aims to align two chromatographic profiles by
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piecewiselinear stretching and compression - also
known aswarping — of thetime axis of one of the
profiles. Theoptimal aignment will bedetermined by
calculation of correlation, which means that no
knowledge of the compounds present isrequired, and
individual peaks do not need to be detected. COW
uses two input parameters (section length and
flexibility), which can be estimated from the observed
peak width. COW isuseful for aimost any kind of
chromatographic data®.

Chrompare

Chrompareisamorerecently devel oped software
sysemwhichalowsthedignment of chromatographic
data. Thissystem includes methodsfor manual and
automated correction of retention timesand responses
by corresponding standards. Thiscomparisonishbased
on aunivariate peak-by-peak approach using peak
height areas and corresponding retention times®.

Principle component analysis (PCA)

Even after the datasetshave been digned, thereis
much effort involved in getting any information
from the data. A single GC-M S metabolite profile
can yield 300-500 distinct compounds®. Thereisa
wealth of information that can begained fromthis,
but the challenges lie in the data processing. One
challengeisdetermining exactly what those distinct
compounds are. Many problems, however, can be
solved without knowing what the chemicalsare. PCA
uses basic vectorsthat span an n-dimensiona space
to givethebest sampleseparation. The concept behind
PCA istodescribethevarianceinaset of multivariate
dataintermsof aset of underlying orthogond variables
(principle components). The original variables
(metabolic concentrations) can be expressed as a
particular linear combination of linear components
(loadings). PCA isan additivemodd, inthe sensethat
each principal component (PC) accountsfor aportion
of thetotal variance Of the data set. Often, a set of
PCs (2 or 3) account for over 90% of the total
variance, and plotting just those PC'scan effectively
reduce the dimensions of the dataset and providea
rapid meansof visudizing smilaritiesor differencesin
the dataset. The same approach can be used inthe

characterization of unknown mutants. M ost mutants
have changesin geneswherethereareadready known
mutantsthat havethat same genechange. It iswasted
effort to study every genein detail, when different
mutationswill often haveidentica effects A mutation
that turnsoff the generesponsiblefor thered color of
aflower will alwaysyield aflower that isnot red,
whether themutationisat one end of thegene or the
other. A particular mutetionislikely togiveaparticular
pattern of metabolites, andif werecognizethe pattern,
we can recognize that mutation; to do so we do not
need toidentify which chemica sareresponsiblefor
each bit of the pattern. However, if thereisaneed to
identify the components of a profile, plots of the
loadings themsel ves may be used to explorewhich
compounds are most responsible for separating
samples into groups, as the most important
compounds (peaks) tend to correspond to high
absoluteloading values.

Hierarchical cluster analysis (HCA)

Hierarchical cluster analysisisan agglomerative
methodol ogy that findsclustersof observationswithin
adataset. Three of the better known agorithmsfor
clustering areaveragelinkage, completelinkage, and
snglelinkage. Generdly, each observationbeginsina
cluster by itself. Thetwo closest clustersare merged
to form a new cluster, which replaces the two old
clusters. Merging of thetwo closest clustersisrepesated
until only onecluster remains. Thedifferent dgorithms
differ in how the distance between two clustersis
computed?.

Metabolite identification

Theidentification of unknown metabolitesfrom
chromatographic datacan bequitedifficult. Thereare
many databases devel oped for mass spectra, but few
of the precursor molecules in plant biosynthesis
pathwayshavebeen previoudy identified, and therefore
most are not present in these databases. Also, the need
to derivitize samplesbeforethey areinjectedintothe
GC causestheresulting fragmentsto be dominated
by thederivitized group andidentification of theorigind
intact chemica becomesdifficult. Furthermore, GC's
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withdectronimpactionization usehighenergies, which
disrupt chemical bondsand leavefragmentsthat are
characteristic of thechemical structures, but without
someof theionswhich represent theintact structure.
This hampers any new identification of unknown
metabolites. Oneway to overcometheseproblemsis
toartificidly synthes zethe precursor moleculesinthe
pathway that one studiesand test for matcheswithin
thedata. Whilethisapproach istime consuming and
not always effective, coupled with PCA or HCA, it
can give one agood idea of where changesin the
pathway aretaking place. Chemica ionization, which
is a much softer technique, can also be used in
combinationwithelectronionizationinorder toobtain
the correct massof the structurein question.

Applicationsin plant science

Pant metabolomicsisgill afiddinitsinfancy, but
the opportunitiesare almost endless. Metabolomics
offers the unbiased ability to characterize and
differentiate genotypes and phenotypes based on
metaboliteleves. Thefollowingisjust asubset of the
possible applications.

Characterization of metabolism

Metabolites are frequently measured to provide
ingght into theresponsesof plantsto physiological or
environmental changes. Thisisillustrated by agroup
of studieswith afocus on measuring changesinthe
leve of amino acidsinleavesduring diurnal rhythms
andinresponseto changesintherateof photosynthess
and photorespiration®*°3L, A lineof tobaccowasbred
to have40-45 of thewildtypenitratereductase (NT).
It was believed that the decrease in NT would
decreases the nitrate assimilation and therefore
decrease the growth of the plants, but the mutants
grew just asfast. These studies were able to show
that plants use sophisticated mechanismsto maintain
relaively congtant level sof central metabolites. Itwas
also shownthat aremarkable consistency intheratio
betweentheindividua minor amino acidsexisted even
thoughtheoverdl levelsvaried dramaticaly.

Another study by Roessener et a. used GC-MS
based metabolic profiling to study for independent

potato genotypes characterized by modificationsin
sucrose metabolism. Using PCA and HCA, they were
abletoidentify dustersfor eachindividud plant sysem.
Extraction analysisallowed for identification of the
most important componentsof the clusters. Thisdata
confirmed that thereductionin starch accumulation
resulted from the partitioning of carbon flux into
glycolysis. Inasecond approach, they used wildtype
potato tissue that was subjected to environmental
manipulations. Theseplantsa so separated inthe PCA.
Thesedatademongtratethe use of metabolic profiling
in conjunction with datamining toolsasatechnique
for the comprehensive characterization of a plant
genotype?.I ntegration with transcript and protein
profiling Integrating metabolic profiling datawith
transcript and protein profiles createsamultilayer
characterization of the system response. Somerecent
reportson carbon-nitrateinteractionshave provided
datasetsthat covered transcripts, enzyme activation
and metabolites***31, These studies, while being
limited to asegment of metabolism, illustratethe need
for amore integrated approach. These multilayer
characterizations will enable us to reveal when
important changesin metabolism occur independently
of changesintranscription.

| dentification of regulated key sitesin networks

Oneof thefirst stepsin eucidating theimportant
regulatory mechanismswithin anetwork isto carry
out asystematicinvestigation of al metabolitesina
metabolic segment. This providesan unbiased and
powerful means to identify the site(s) at which
metabolic flux isregulated. In astudy by Tiessen et
al., researcherswere ableidentify the siteat which
gtarch synthesisisinhibited after detaching agrowing
potato tuber from the mother plant®. After
investigating the subcellular level of every metabolite
in the pathway between sucrose and starch, they
identified ADP-glucose pyrophosphorylase (AGPase)
asthe uniquesite of regulation. Further biochemical
studies showed that AGPase activity isinhibited by a
novel redox-dependent post-transcriptional
mechanism involving the formation of an inter-
molecular cysteine bridge between thetwo catalytic
subunitsof AGPase.
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Investigation of gene function

Theresultsof ametabolic analysiscan beusedto
definetheroleof ageneand to determineif expresson
level controls pathway activity. A challenge in
functiona genomicsisassigning functionto genesof
poorly defined or unknown function. Studies of
antisense plants with progressively decreasing
expression of a target enzyme have shown that
diagnostic changesin metabolitescan often be detected
inlineswherethealteration of enzymeactivity istoo
smadll to produceany visud phenotype?=1%3, Amove
towards using metabolic analyseswill enable usto
perform an unbiased determination between different
linesand cultivars. Compared to conventiona methods
of phenotype determination, which are time
consuming and not alwaysaccurateat [ow expresson
levels, metabolic profiling allows for subtle but
potentially important differencesto be detected.

Wheredowego from here?

Whilemuch hasbeen accomplished inthefield of
metabolomics, thereisawaysroomfor improvement.
New ana ytical techniquesneed to be devel oped that
canincreasethe amount of the metabolomethat can
besampledin each sep. Withanincreaseintheamount
of metabolitessampled, it will becomemoreimportant
to have instruments that are integrated with peak
matching software. One of themost time consuming
stepsin the present procedureistrying to compensate
for changesthat occur inthe chromatogram because
of minor changes in the extraction protocol and
instruments over time. Therefore, it will also be
beneficial to create automated proceduresthat can
identify unknown pesksby combining theinformation
from M Sfragmentation patterns, isotoperatios, exact
masses, structure generators, and biochemical
databases. Once the analytical and extraction
procedures have been perfected and the
bioinformatics tools devel oped, there are endless
metabolic linkage networksthat need to be defined.

Conclusions

M etabol omics hasthe potential to makealarge
impact on areasof biology that extend far beyond the

scopeof thispaper. Theultimate god isto understand
andto predict thebehaviour of complex systems(such
asplants) by using theresultsobtained from datamining
tools for subsequent modeling and simulation.
M etabol omics has devel oped to the point where it
can be applied alone and in combination with other
technol ogiesof functiona genomics.
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