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The publishing of complete genome sequences has
given genetics a huge boost and we are fortunate
enough to have an excellent understanding of the gene
to protein link. Nevertheless, our understanding of
plant systems often stumbles in the gap between
proteome and phenotype. We can look at what genes
are being expressed, and what proteins are present,
but what, for example, causes certain trees to produce
more cellulose than others? Or why does a particular
mutant plant only grow half as tall? Metabolomics
attempts to answer these questions.

In the same way as the genome is all the genetic
information in a plant, and the proteome is all the
proteins, the “metabolome” is all the metabolites:
metabolomics is the study of all the chemicals in a
plant that have a low molecular weight. Metabolites
are the end products of cellular functions, and their
levels can be viewed as the response of biological
systems to environmental or genetic manipulation1.
These chemicals are integral to a better understanding
of plant functions, both the everyday life of a “normal”
plant, and behavior of a special plant obtained through
classical breeding, mutation, or other manipulation.

Plants react to any change in their surroundings. If
a bird perches on a leaf, the leaf needs to adjust its
photosynthetic pathway to cope with darkness (and
subsequent local nitrogen overload if the bird remains
for any length of time). If a fungus attacks a leaf, the
leaf will resist its attack. In both cases, everything the
plant does can be followed by looking at the changes
in the low molecular weight chemicals. Metabolites
represent the catabolic and anabolic activities being
performed by proteins at any given time. Within
species or organisms, single nucleotide polymorphisms
can result in small changes in the activity and level of
expression of encoded proteins. The cascading effect
begins with a modified genome, leading to modified
proteins, and consequently, a change in the pattern
and/or concentration of metabolites. Therefore,

changes in the genotype will be manifested through
an observed change in metabolome2. Quantitative and
qualitative measurements of large numbers of cellular
metabolites provide a broad view of the biochemical
status of an organism, which can then be used to
monitor and assess gene function3. If one has a plant
that is genetically different — perhaps a mutation or
the product of a breeding program- then its basal levels
of metabolites and how it reacts to the environment
will be different. Studies of metabolomics are aimed
at linking these differences to the genetic differences
that caused them, however indirectly. Linking the
genome and the proteome to the metabolome is one
of the major interests of modem plant science. The
challenges are first how to measure all these chemicals
simultaneously, and second, how to make sense of
the vast amount of measurements.

The development of metabolomics

Metabolomics developed from metabolic profiling.
In the early 1970’s Gas Chromatography - Mass
Spectrometry (GC-MS) technologies were used to
analyze steroids, acids, and neutral and acidic urinary
drug metabolites4,5,6. Soon afterwards, the concept
of using metabolic profiles to screen, diagnose, and
access health began to spread7,8. Metabolic profiling
research remained stable in the 1980’s with
approximately 10 to 15 publications a year. With this
increase in publications came a divergence in the use
of the new technology. However, it was not until the
early 1990’s that metabolic profiling was first used as
a diagnostic technique in plant systems9.

At the turn of the century, many genome sequencing
efforts were underway or near completion, and it soon
became clear that a large number of the genes that
were being sequenced could be assigned a
function10,11. It then became apparent that a closer
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study of proteins (proteomics) might also be an
effective means with which to study gene function.
While it did not happen immediately, this thought
process eventually trickled down to the consideration
of the metabolome12.  Researchers at the Max Planck
Institute in Germany (Trethewey, Willmitzer, Fiehn,
Femie) then pioneered this approach for plants based
on the methods described by Sauter9.  Since then, the
number of academic and commercial groups using and
entering this field has grown exponentially.

Metabolomic technologies

The metabolome is very diverse. It includes lipid
soluble chemicals that are normally found in
membranes, polar chemicals from aqueous parts of
the cell, acidic and basic ions, stable structures and
structures that oxidize at the slightest mistreatment.
Until a universal measuring machine materializes,
anyone working in metabolomics will have to make
compromises. An extraction method and machine must
be carefully chosen to suit particular interests. The
typical equipment used includes nuclear magnetic
resonance (NMR)13,14,15, fourier transform infrared
(FT-IR) spectroscopy16,17  and mass spectrometry,

often combined with chromatography3,18,19.
Chromatography and Mass Spectrometry

The most widely used and powerful methods used
to profile low molecular weight chemicals are based
on chromatographic separation, followed by detection
and validation by mass spectroscopy. These include
gas chromatography mass spectroscopy (GC-MS)
and more recently, liquid chromatography mass
spectroscopy (LC-MS) 20. GC-MS and LC-MS in
combination are able to detect several hundred
chemicals, including sugars, sugar alcohols, organic
acids, amino acids, fatty acids and a wide range of
diverse secondary metabolites3,20,21. GC-MS and LC-
MS are especially useful in differentiating chemical
isomers such as those of common hexoses, which all
have the same mass2. While GC-MS is a low cost
alternative to some other metabolomic technologies
and provides high separation efficiencies, it requires
that samples be volatile. This requirement is readily
accomplished by chemical derivitization, but at the cost
of additional time and variance. In LC-MS a
derivitization step is not essential, and selection of the
compound comes from either the extraction method

Figure 1.  An NMR spectra of methyl propanoate.  The structure of each peak is determined  by
interference from hydrogens on neighbouring carbons.
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or the type of column used. However, LC-MS
profiling methods all rely to great extent on
comparisons with reference compounds. Often one
is able to identify the class of compounds the
metabolite belongs to, but not its exact identity.

Nuclear magnetic resonance

NMR methods provide metabolite fingerprints with
good chemical specificity for compounds containing
elements with non zero magnetic moments, such as
1H, 13C, 15N, and 32P which are commonly found in
most biological metabolites13. However, 1H NMR
spectra of plant extracts are inevitably crowded not
only because there is a large number of contributing
compounds, but also because of the low overall
chemical shift dispersion (chemical shift is caused by
the chemistry around the nucleus changing its
resonance). Increased specificity and resolution can
be achieved by using higher magnetic fields. Thus,
NMR spectra of unpurified solvent extracts of plants
has the potential to provide a relatively unbiased
fingerprint, containing overlapping signals of the
majority of the metabolites present in the solution.

Fourier transform infrared spectroscopy

Fourier transform infrared (FT-IR) spectroscopy
primarily measures vibrations of functional groups and
highly polar bonds. These (bio)chemical ‘fingerprints’
are made up of the vibrational features of all the
sample’s components. FT-IR spectrometers record
the interaction of IR radiation with experimental
samples, measuring the frequencies at which the
sample absorbs the radiation and the intensities of the
absorptions. Determining these frequencies allows
identification of the sample’s chemical makeup since
chemical functional groups are known to absorb light
at specific frequencies16,17. However, there is a lack
of differentiation between isomers, and the presence
of fragment and adduct ions and problems of
quantification caused by ion suppression make the use
of powerful classification tools essential. The
combination of FT-MS data with other
chromatographic MS data is potentially powerful22.

Metabolomic analysis

Currently, there is no method to extract all
metabolites and measure them all. Additionally, there
is always a risk that some metabolites will be lost along
the way23,24,25. Nevertheless, advances in technology
now allow much larger ranges to be measured than
ever before. These advances in technology make it
necessary to improve bioinformatics and data handling
methods: there is no point in collecting numbers if we
can not process them meaningfully. While
metabolomics is still in its infancy, there are a number
of bioinformatics tools currently being used, and a
number in development. These tools are used to align
chromatographic data and differentiate components
in large datasets.

Correlation optimized warping (COW)

Until recently, most analysis of metabolomic data
was performed on reduced data sets using areas of
selected peaks detected in the chromatograms. We
look at a pathway and guess what should have
changed in it when the plant was subject to some sort
of manipulation. Of course, the plant often has
compensated for the original change in some way, and
the changes we see are often very different from what
we expect. Significant changes may occur in pathways
and processes quite far from where we were looking.
This is where a broader approach pays off;  if we
only measure the metabolites where we expect to see
a change, we may end up with uninterpretable data
and have no idea what happened, because we missed
the true consequences of what was going on. This
reduction in dataset size also introduced the problem
of extracting specific peak data from each
chromatogram. These disadvantages can be overcome
by using the entire dataset that is generated from the
chromatographic and/or spectroscopic instruments,
but, as small unavoidable differences in experimental
conditions can cause changes and drift in peaks, it is
necessary to align all of the peaks.

There are a number of approaches that have been
formulated to tackle this problem.26,27 Unfortunately,
they still failed to use the entire data matrix or still
relied on preprocessing and peak detection. COW
aims to align two chromatographic profiles by
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piecewise linear stretching and compression - also
known as warping — of the time axis of one of the
profiles. The optimal alignment will be determined by
calculation of correlation, which means that no
knowledge of the compounds present is required, and
individual peaks do not need to be detected. COW
uses two input parameters (section length and
flexibility), which can be estimated from the observed
peak width. COW is useful for almost any kind of
chromatographic data28.

Chrompare

Chrompare is a more recently developed software
system which allows the alignment of chromatographic
data. This system includes methods for manual and
automated correction of retention times and responses
by corresponding standards. This comparison is based
on a univariate peak-by-peak approach using peak
height areas and corresponding retention times29.

Principle component analysis (PCA)

Even after the datasets have been aligned, there is
much effort involved in getting any information
from the data. A single GC-MS metabolite profile
can yield 300-500 distinct compounds2. There is a
wealth of information that can  be gained from this,
but the challenges lie in the data processing. One
challenge is determining exactly what those distinct
compounds are. Many problems, however, can be
solved without knowing what the chemicals are. PCA
uses basic vectors that span an n-dimensional space
to give the best sample separation. The concept behind
PCA is to describe the variance in a set of multivariate
data in terms of a set of underlying orthogonal variables
(principle components). The original variables
(metabolic concentrations) can be expressed as a
particular linear combination of linear components
(loadings). PCA is an additive model, in the sense that
each principal component (PC) accounts for a portion
of the total variance Of the data set. Often, a set of
PCs (2 or 3) account for over 90% of the total
variance, and plotting just those PC’s can effectively
reduce the dimensions of the dataset and provide a
rapid means of visualizing similarities or differences in
the data set. The same approach can be used in the

characterization of unknown mutants. Most mutants
have changes in genes where there are already known
mutants that have that same gene change. It is wasted
effort to study every gene in detail, when different
mutations will  often  have identical effects. A mutation
that turns off the gene responsible for the red color of
a flower will always yield a flower that is not red,
whether the mutation is at one end of the gene or the
other. A particular mutation is likely to give a particular
pattern of metabolites, and if we recognize the pattern,
we can recognize that mutation; to do so we do not
need to identify which chemicals are responsible for
each bit of the pattern. However, if there is a need to
identify the components of a profile, plots of the
loadings themselves may be used to explore which
compounds are most responsible for separating
samples into groups, as the most important
compounds (peaks) tend to correspond to high
absolute loading values.

Hierarchical cluster analysis (HCA)

Hierarchical cluster analysis is an agglomerative
methodology that finds clusters of observations within
a data set. Three of the better known algorithms for
clustering are average linkage, complete linkage, and
single linkage. Generally, each observation begins in a
cluster by itself. The two closest clusters are merged
to form a new cluster, which replaces the two old
clusters. Merging of the two closest clusters is repeated
until only one cluster remains. The different algorithms
differ in how the distance between two clusters is
computed2.

Metabolite identification

The identification of unknown metabolites from
chromatographic data can be quite difficult. There are
many databases developed for mass spectra, but few
of the precursor molecules in plant biosynthesis
pathways have been previously identified, and therefore
most are not present in these databases. Also, the need
to derivitize samples before they are injected into the
GC causes the resulting fragments to be dominated
by the derivitized group and identification of the original
intact chemical becomes difficult. Furthermore, GC’s
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with electron impact ionization use high energies, which
disrupt chemical bonds and leave fragments that are
characteristic of the chemical structures, but without
some of the ions which represent the intact structure.
This hampers any new identification of unknown
metabolites. One way to overcome these problems is
to artificially synthesize the precursor molecules in the
pathway that one studies and test for matches within
the data. While this approach is time consuming and
not always effective, coupled with PCA or HCA, it
can give one a good idea of where changes in the
pathway are taking place. Chemical ionization, which
is a much softer technique, can also be used in
combination with electron ionization in order to obtain
the correct mass of the structure in question.

Applications in plant science

Plant metabolomics is still a field in its infancy, but
the opportunities are almost endless. Metabolomics
offers the unbiased ability to characterize and
differentiate genotypes and phenotypes based on
metabolite levels. The following is just a subset of the
possible applications.

Characterization of metabolism

Metabolites are frequently measured to provide
insight into the responses of plants to physiological or
environmental changes. This is illustrated by a group
of studies with a focus on measuring changes in the
level of amino acids in leaves during diurnal rhythms
and in response to changes in the rate of photosynthesis
and photorespiration29,30,31. A line of tobacco was bred
to have 40-45 of the wildtype nitrate reductase (NT).
It was believed that the decrease in NT would
decreases the nitrate assimilation and therefore
decrease the growth of the plants, but the mutants
grew just as fast. These studies were able to show
that plants use sophisticated mechanisms to maintain
relatively constant levels of central metabolites. It was
also shown that a remarkable consistency in the ratio
between the individual minor amino acids existed even
though the overall levels varied dramatically.

Another study by Roessener et al. used GC-MS
based metabolic profiling to study for independent

potato genotypes characterized by modifications in
sucrose metabolism. Using PCA and HCA, they were
able to identify clusters for each individual plant system.
Extraction analysis allowed for identification of the
most important components of the clusters. This data
confirmed that the reduction in starch accumulation
resulted from the partitioning of carbon flux into
glycolysis. In a second approach, they used wildtype
potato tissue that was subjected to environmental
manipulations. These plants also separated in the PCA.
These data demonstrate the use of metabolic profiling
in conjunction with data mining tools as a technique
for the comprehensive characterization of a plant
genotype21.Integration with transcript and protein
profiling Integrating metabolic profiling data with
transcript and protein profiles creates a multilayer
characterization of the system response. Some recent
reports on carbon-nitrate interactions have provided
datasets that covered transcripts, enzyme activation
and metabolites24,30,31. These studies, while being
limited to a segment of metabolism, illustrate the need
for a more integrated approach. These multilayer
characterizations will enable us to reveal when
important changes in metabolism occur independently
of changes in transcription.

Identification of regulated key sites in networks

One of the first steps in elucidating the important
regulatory mechanisms within a network is to carry
out a systematic investigation of all metabolites in a
metabolic segment. This provides an unbiased and
powerful means to identify the site(s) at which
metabolic flux is regulated. In a study by Tiessen et
al., researchers were able identify the site at which
starch synthesis is inhibited after detaching a growing
potato tuber from the mother plant32. After
investigating the subcellular level of every metabolite
in the pathway between sucrose and starch, they
identified ADP-glucose pyrophosphorylase (AGPase)
as the unique site of regulation. Further biochemical
studies showed that AGPase activity is inhibited by a
novel redox-dependent post-transcriptional
mechanism involving the formation of an inter-
molecular cysteine bridge between the two catalytic
subunits of AGPase.
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Investigation of gene function

The results of a metabolic analysis can be used to
define the role of a gene and to determine if expression
level controls pathway activity. A challenge in
functional genomics is assigning function to genes of
poorly defined or unknown function. Studies of
antisense plants with progressively decreasing
expression of a target enzyme have shown that
diagnostic changes in metabolites can often be detected
in lines where the alteration of enzyme activity is too
small to produce any visual phenotype24,31,33,34. A move
towards using metabolic analyses will enable us to
perform an unbiased determination between different
lines and cultivars. Compared to conventional methods
of phenotype determination, which are time
consuming and not always accurate at low expression
levels, metabolic profiling allows for subtle but
potentially important differences to be detected.

Where do we go from here?

While much has been accomplished in the field of
metabolomics, there is always room for improvement.
New analytical techniques need to be developed that
can increase the amount of the  metabolome that can
be sampled in each step. With an increase in the amount
of metabolites sampled, it will become more important
to have instruments that are integrated with peak
matching software. One of the most time consuming
steps in the present procedure is trying to compensate
for changes that occur in the chromatogram because
of minor changes in the extraction protocol and
instruments over time. Therefore, it will also be
beneficial to create automated procedures that can
identify unknown peaks by combining the information
from MS fragmentation patterns, isotope ratios, exact
masses, structure generators, and biochemical
databases. Once the analytical and extraction
procedures have been perfected and the
bioinformatics tools developed, there are endless
metabolic linkage networks that need to be defined.

Conclusions

Metabolomics has the potential to make a large
impact on areas of biology that extend far beyond the

scope of this paper. The ultimate goal is to understand
and to predict the behaviour of complex systems (such
as plants) by using the results obtained from data mining
tools for subsequent modeling and simulation.
Metabolomics has developed to the point where it
can be applied alone and in combination with other
technologies of functional genomics.
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