joanne@msl.ubc.ca

wireless login:

mslguest

4myguest

Laboratory Bioinformatics

Common tools, useful databases, and tricks of the trade for practical use in the laboratory.

bioteach.ubc.ca/bioinfo2009

Workshop Schedule

- Laptops, available here for your use 9am - 4:30pm
- wireless login

mslguest

4myguest

 Vancouver guide books available

Today's Topics

- **BLAST** Finding Function by Sequence Similarity
- GUIDED TOUR Advanced Tips & Tricks for Using BLAST
- **PRACTICAL EXERCISES** The Jurassic Park Detective Story
- COMMON TASKS Basic Search; Searching Sets of Sequences (multiple inputs; small custom databases); Primer Design

BLAST

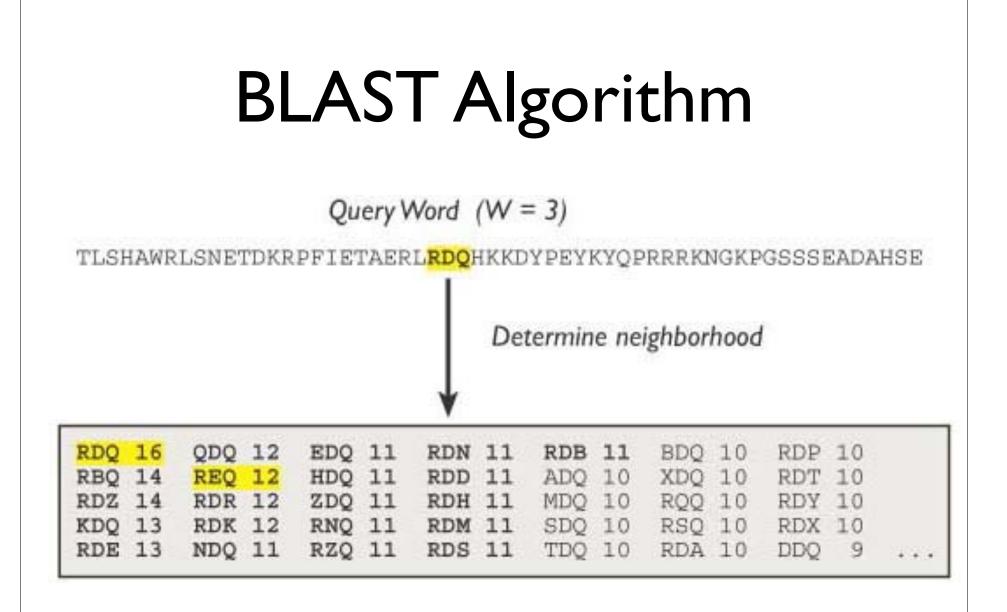
Finding Function By Sequence Similarity

What do the Score and the e-value really mean?

• The quality of the alignment is represented by the Score (S).

The score of an alignment is calculated as the sum of substitution and gap scores. Substitution scores are given by a look-up table (PAM, BLOSUM) whereas gap scores are assigned empirically .

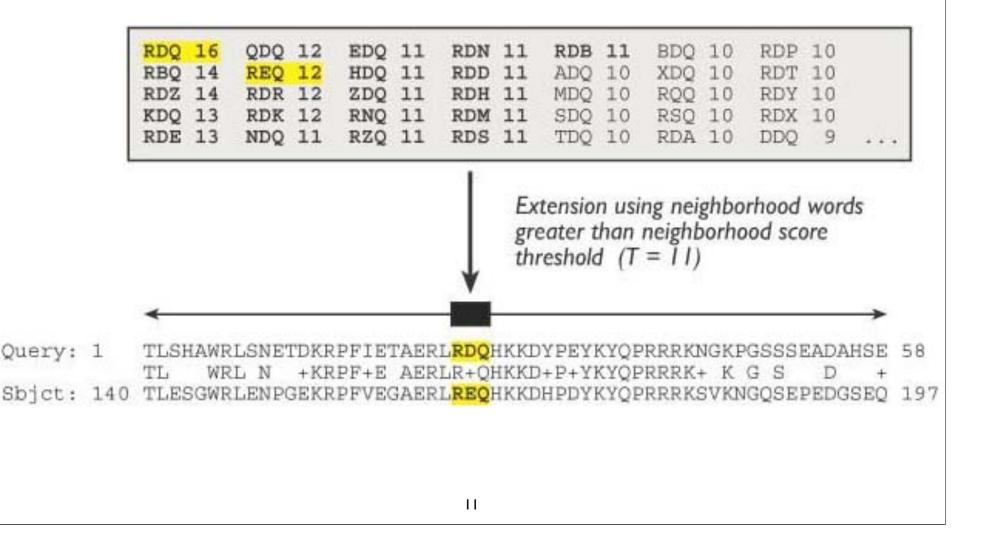
• The significance of each alignment is computed as an E value (E).

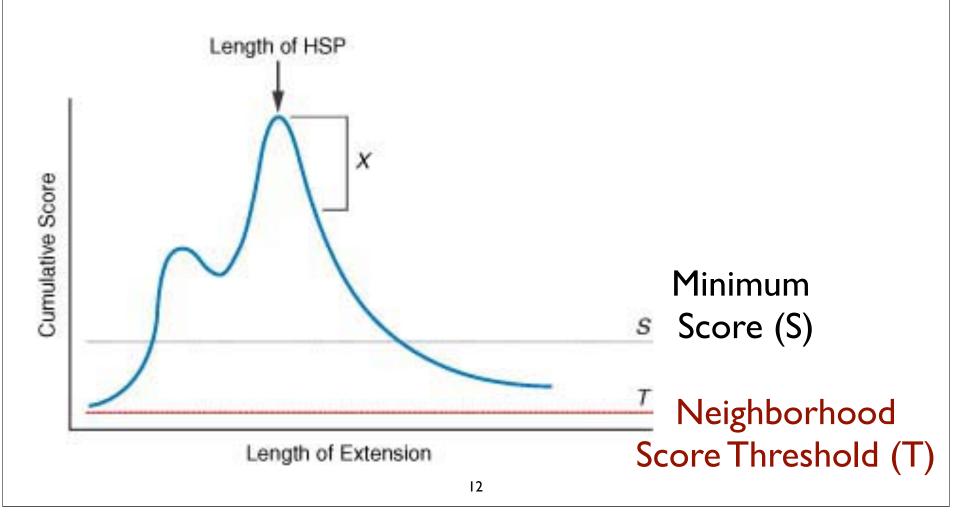

Expectation value. The number of different alignments with scores equivalent to or better than S that are expected to occur in a database search by chance. The lower the E value, the more significant the score.

BLAST Algorithm

- Scoring of matches done using scoring matrices
- Sequences are split into words (default n=3)
 - Speed, computational efficiency
- BLAST algorithm extends the initial "seed" hit into an HSP
 - HSP = high scoring segment pair = Local optimal alignment

How Does BLAST Really Work?


- The BLAST programs improved the overall speed of searches while retaining good sensitivity (important as databases continue to grow) by breaking the query and database sequences into fragments ("words"), and initially seeking matches between fragments.
- Word hits are then extended in either direction in an attempt to generate an alignment with a score exceeding the threshold of "S".


How Does BLAST Really Work?

- The BLAST programs improved the overall speed of searches while retaining good sensitivity (important as databases continue to grow) by breaking the query and database sequences into fragments ("words"), and initially seeking matches between fragments.
- Word hits are then extended in either direction in an attempt to generate an alignment with a score exceeding the threshold of "S".

BLAST Algorithm

Extending the High Scoring Segment Pair (HSP)

> gb AAL08419.1 PTEN [Takifugu rubripes] Length=412 Score = 197 bits (501), Expect = 2e-49, Method: Composition-based stats. Identities = 95/100 (95%), Positives = 98/100 (98%), Gaps = 0/100 (0%) Query 2 IVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKI 61 +VSRNKRRYOEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKI Sbjct 8 MVSRNKRRYOEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKI 67 Query 62 YNLCAERHYDTAKFNCRVAQYPFEDHNPPQLELIKPFKON 101 YNLCAERHYD AKFNCRVAQYPFEDHNPPQLELIKPF ++ Sbjct 68 YNLCAERHYDAAKFNCRVAOYPFEDHNPPOLELIKPFCED 107 Score = 83.6 bits (205), Expect = 4e-15, Method: Composition-based stats. Identities = 60/103 (58%), Positives = 68/103 (66%), Gaps = 32/103 (31%) Ouerv 99 KONKMLKKDKMFHFWVNTFFIPGPEEV--------D 126 KONKM+KKDKMFHFWVNTFFIPGPEE Sbjct 260 KQNKMMKKDKMFHFWVNTFFIPGPEESRDKLENGAVNNADSQOGVPAPGQGQPQSAECRE 319 Ouery 127 NDKEYLVLTLTkndldkankdkanRYFSPNFKVKLYFTKTVEE 169 +D++YL+LTL+KND DKANKDKANRYFSPNFKVKL F+KTVEE Sbjct 320 SDRDYLILTLSKNDRDKANKDKANRYFSPNFKVKLCFSKTVEE 362 > gb AAH93110.1 UG Ptenb protein [Danio rerio] Length=289 Score = 197 bits (500), Expect = 2e-49, Method: Composition-based stats. Identities = 95/99 (95%), Positives = 98/99 (98%), Gaps = 0/99 (0%) Query 3 VSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIY 62 VSRNKRRYOEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHK+HYKIY Sbjct 9 VSRNKRRYOEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKDHYKIY 68 Ouery 63 NLCAERHYDTAKFNCRVAOYPFEDHNPPOLELIKPFKON 101 NLCAERHYDTAKFNCRVAQYPFEDHNPPQLELIKPF ++ Sbjct 69 NLCAERHYDTAKFNCRVAOYPFEDHNPPOLELIKPFCED 107

BLAST Algorithm

- Scoring of matches done using scoring matrices
- Sequences are split into words (default n=3)
 - Speed, computational efficiency
- BLAST algorithm extends the initial "seed" hit into an HSP
 - HSP = high scoring segment pair = Local optimal alignment

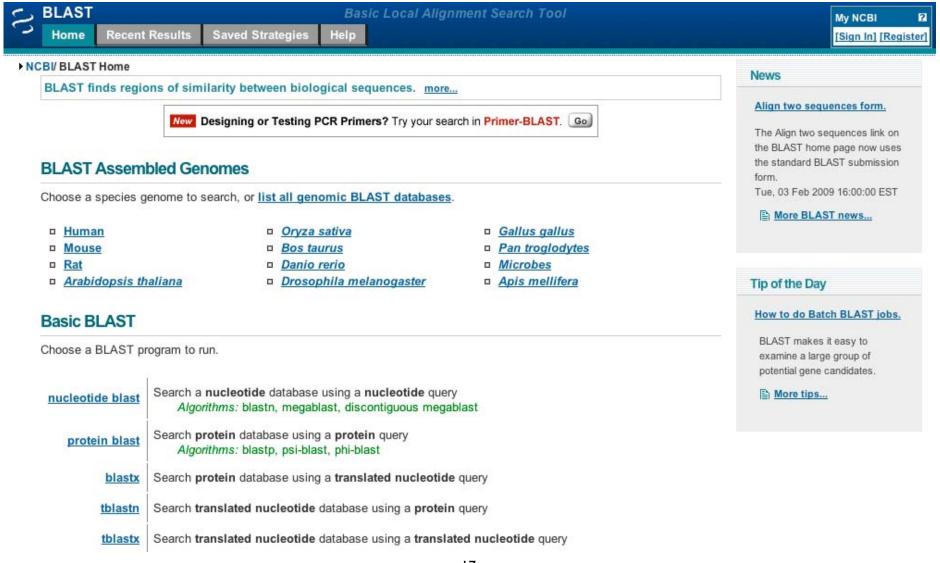
Credits

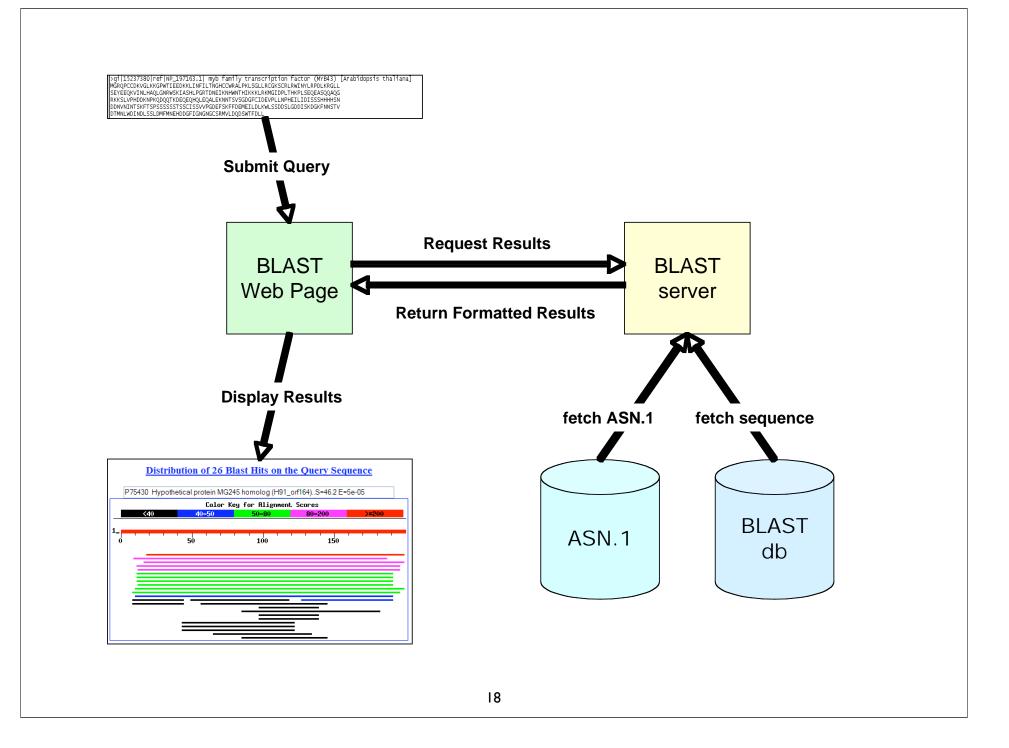
• Materials for this presentation have been adapted from the following sources:

NCBI HelpDesk - Field Guide Course Materials

Bioinformatics: A practical guide to the analysis of genes and proteins

• Questions? Please contact:


Dr. Joanne Fox Michael Smith Laboratories joanne@msl.ubc.ca


BLAST

GUIDED TOUR: Advanced Tips & Tricks for Using BLAST

http://blast.ncbi.nlm.nih.gov/

Consider your research question ...

- Are you looking for an particular gene in a particular species?
- Are you looking for additional members of a protein family across all species?
- Are you looking to annotate genes in your species of interest?

Know your reagents

Changing your choice of database is changing your search space

• Database size affects the BLAST statistics

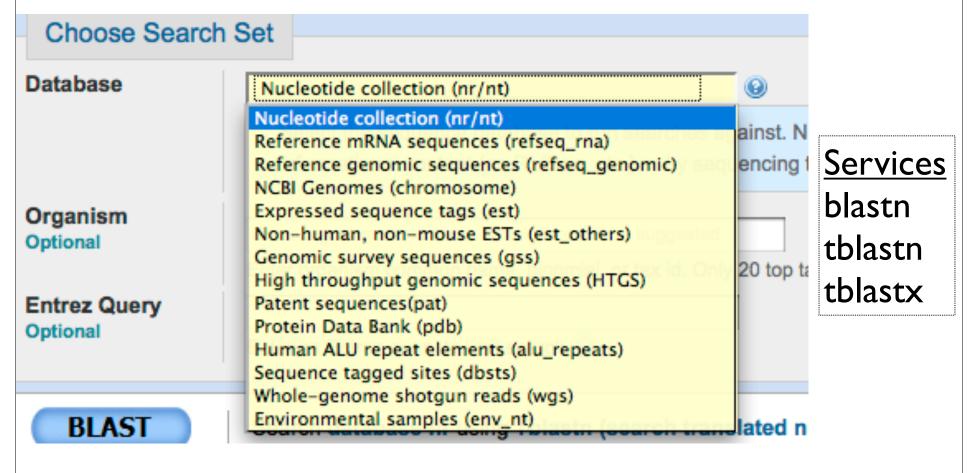
 Databases change rapidly and are updated frequently

Protein Databases: nr

Database	Non-redundant protein sequences (nr)	0
	Non-redundant protein sequences (nr)	
	Reference proteins (refseq_protein)	
Organism	Swissprot protein sequences(swissprot)	Cus
Optional	Patented protein sequences(pat)	0
	Protein Data Bank proteins(pdb)	<u> </u>
Entrez Query	Environmental samples(env_nr)	

- nr (non-redundant protein sequences) default
 - GenBank CDS translations
 - NP_ RefSeqs
 - Outside Protein
 - PIR, Swiss-Prot, PRF
 - PDB (sequences from structures)
- pat protein patents
- env_nr environmental samples

Services
blastp
blastx


Nucleotide Databases: Human and Mouse

Choose Search	ot	
Choose deal ci		
Database	Human genomic + transcript OMouse genomic + transcript OOthers 🔽 🕢 💽	(nr etc.):

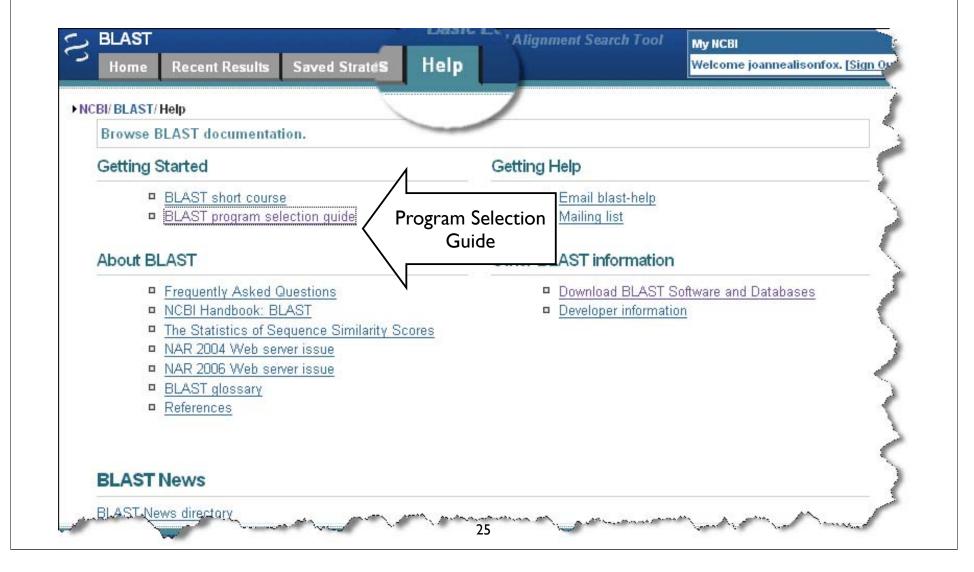
- Human and mouse genomic + transcript default
- Separate sections in output for mRNA and genomic
- Direct links to Map Viewer for genomic sequences

Megablast, blastn service

Nucleotide Databases: Traditional

Nucleotide Databases:

- **nr (nt)** Traditional GenBank
 - + RefSeq nucleotides
 - + PDB sequences
- refseq_rna
- refseq_genomic NC_
- NCBI genomes


complete genomes

- + chromosomes from RefSeq
- **est** expressed sequence tags
 - human + mouse, others

- **htgs** high throughput genomic
 - unfinished
- **gss** genome survey sequence
 - single-pass genomic data
- **pdb** protein data bank
 - derived from 3D structures
- wgs
 - whole genome shotgun
- env_nt
 - environmental samples

Databases are mostly non-overlapping

http://blast.ncbi.nlm.nih.gov/

3. Program Selection Tables

The appropriate selection of a BLAST program for a given search is influenced by the following three factors 1) the nature of the query, 2) the purpose of the search, and 3) the database intended as the target of the search and its availability. The following tables provide recommendations on how to make this selection.

		Table 3.1 Program Selection for Nucleo	tide Queries	
Length 1	Database	Purpose	Program	Explanation
20 bp or longer <u>Nucle</u> 28 bp or above for megablast		Identify the query sequence	<u>discontiguous megablast,</u> <u>megablast</u> , or <u>blastn</u>	Learn more
	ger <u>Nucleotide</u> ove for	Find sequences similar to query sequence	discontiguous megablast or blastn	Learn more
		Find similar sequence from the Trace archive	<u>Trace megablast</u> , or <u>Trace</u> <u>discontiguous megablast</u>	Learn more
		Find similar proteins to translated query in a translated database	Translated BLAST (tblastx)	Learn more
	Peptide	Find similar proteins to translated query in a protein database	Translated BLAST (blastx)	Learn more
7 - 20 bp	<u>Nucleotide</u>	Find primer binding sites or map short contiguous motifs	Search for short, nearly exact matches	Learn more

NOTE:

¹ The cut-off is only a recommendation. For short queries, one is more likely to get matches if the "Search for short, nearly exact matches" page is used. Detailed discussion is in the <u>Section 4</u> below. With default setting, the shortest unambiguous query one can use is 11 for blastn and 28 for MEGABLAST.

		Table 3.2 Program Selection for Protein Q	ueries	
Length 1	Database	Purpose	Program	Explanation
		Identify the query sequence or find protein sequences similar to the query	Standard Protein BLAST (blastp)	Learn more
15 residues or longer		Find members of a protein family or build a custom position-specific score matrix	PSI-BLAST	Learn more
		Find proteins similar to the query around a given pattern	PHI-BLAST	Learn more
		Find conserved domains in the query	CD-search (RPS-BLAST)	Learn more
		Find conserved domains in the query and identify other proteins with similar domain architectures	Conserved Domain Architecture Retrieval Tool (CDART)	Learn more
!	Nucleotide	Find similar proteins in a translated nucleotide database	Translated BLAST (tblastn)	Learn more
5-15 residues	Peptide	Search for peptide motifs	Search for short, nearly exact matches	Learn more

Note:

¹ The cut-off is only a recommendation. For short queries, one is more likely to get matches if the "Search for short, nearly exact matches" page is used. Detailed discussion is in <u>Section 4</u> below.

As genomic and other specialized sequence information is made available to the public, NCBI creates specialized BLAST pages for those sequences. The table below provides a general guide on how to select and use those special BLAST databases.

	Table 3.3 Search against	t Organism Specific or Genom	e Databases 1	
Query ²	Database	Purpose	BLAST Pages to Use ³	Explanation
	Human Genome		Human	Learn more
	Mouse Genome		Mouse	Learn more
	Rat Genome		<u>Rat</u>	Learn more
	Chimp, Cow, Dog, or Chicken Genome	Map the query sequence	Chimp, or Cow, Dog, Chicken	Learn more
Nucleotide: 20 or 28 bp and above	Cat, Sheep, or Pig Genome	structure	Cat, Sheep, or Pig	Learn more
	Zebrafish or Fugu (Pufferfish)		Zebrafish or Fugu rubripes	Learn more
	Insects (flies and honeybees)		Insects	Learn more
	Nematodes (worms)	identity novel genes	Nematodes	Learn more
15 residues and above	Plants	Find homologs	Plants	Learn more
	Fungi Genomes (including yeasts)	Other data mining	<u>Fungi</u>	Learn more
	Protozoa		Protozoa	Learn more
	Environmental Samples		Environmental Samples	Learn more
	Other Lower Eukaryotic Genomes		Other eukaryotes genomes	Learn more
	Microbial Genomes		Microbial genomes	Learn more

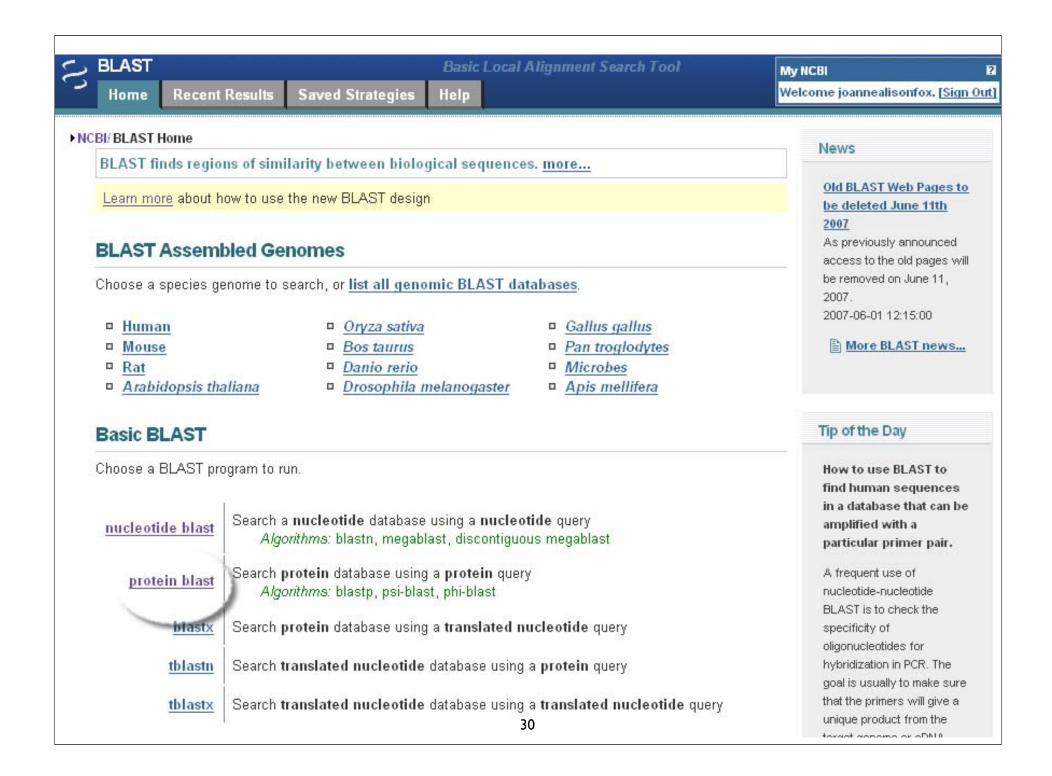
NOTE:

¹ Those pages access the genome database consisting of contig assemblies and other sequences specific to the organisms. Not all organisms listed here have genome assemblies available.

² Sequence length is only a suggestion. For most of the pages, the search parameters can be modified to enable searches with a short query by pasting additional options in the "Advanced Options" text box. For protein comparisons, -F F -e 20000 -W 2 should be used. For nucleotide comparison, use -F F -e 1000 -W 7. This also requires the uncheck of the megablast checkbox.

³ Available databases and their contents are described in Section 5.

BLAST pages for special purposes are listed under Special and Meta sections. Their functions are described in Table 3.4 below.

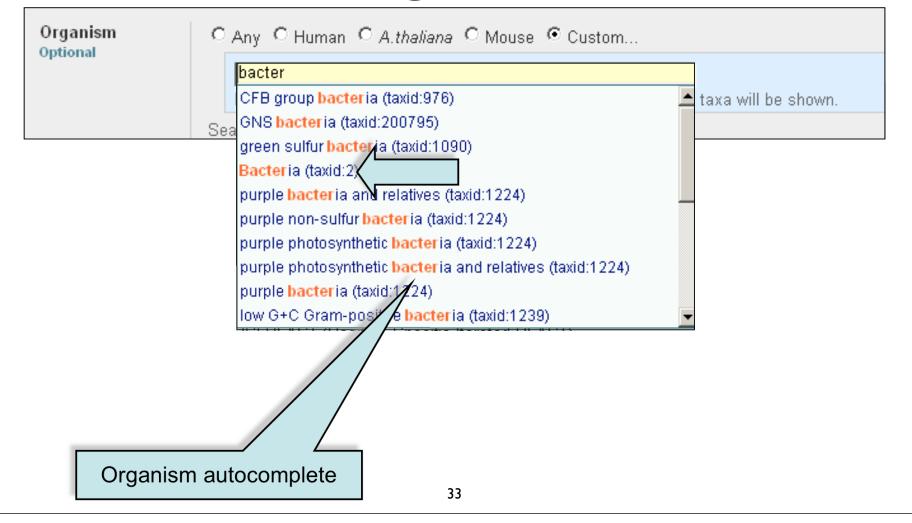

	Table 3.4 Function	of Special BLAST Pages under Special/Meta S	Sections	
Query ¹	Database	Purpose	BLAST Page to Use	Explanation
Nucleotide: 11 bp or	_ 2	Compare two sequences directly	Align two sequences	Learn more
above Protein: 15 or above	Immunoalobulin seauences	Find matches to curated immunoglobulin sequences	<u>igBLAST</u>	Learn more
	UniVec	Screen for vector contamination	VecScreen	Learn more
Nucleotide: 20 or 28 bp and above	GEO	Find matches to sequences with MicroArray information	GEO BLAST	Learn more
	SNP	Find matches to human reference SNPs	SNP BLAST	Learn more
-	_ 3	To retrieve results for a search with its RID	Retrieve result for an RID	Learn more

Note:

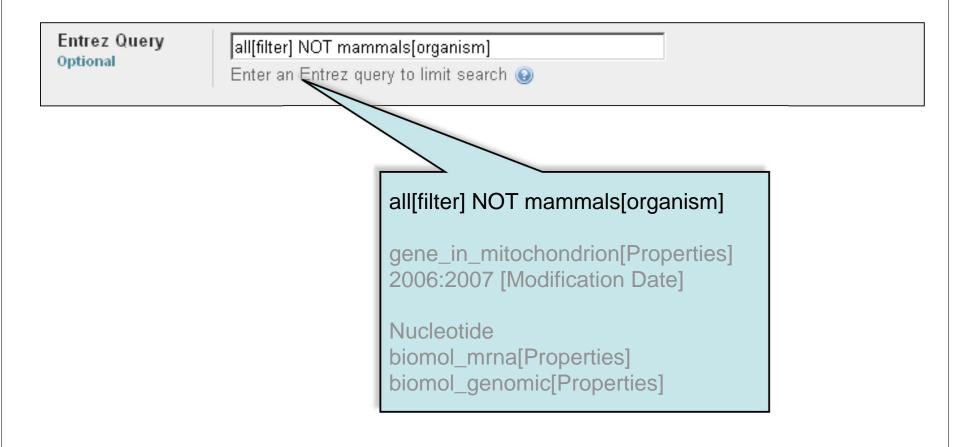
¹ The query sequence length is only a suggestion. For most of the pages, the search parameters can be modified to enable better handling of short query by pasting additional options in the "Advanced Options" text box. For protein comparisons, -F F -e 20000 -W 2 should be used. For nucleotide comparison, use -F F -e 2000 -W 7.

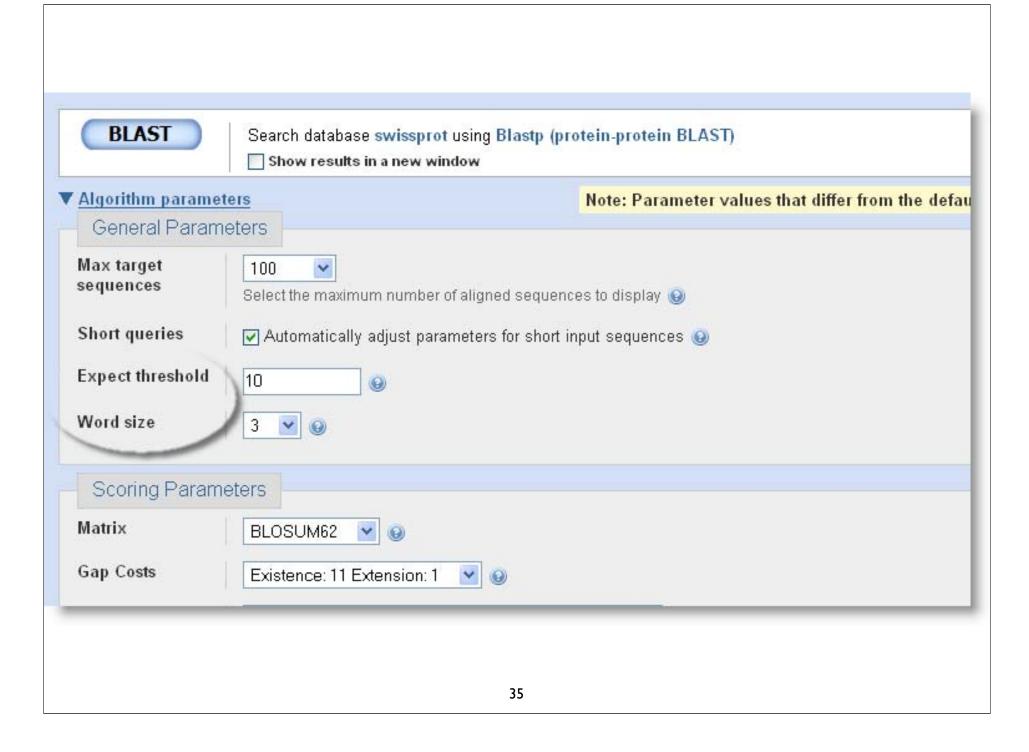
² "Align two sequences" treats the second sequence as the database.

³ Requires valid RIDs that are assigned within the past 24 hours.

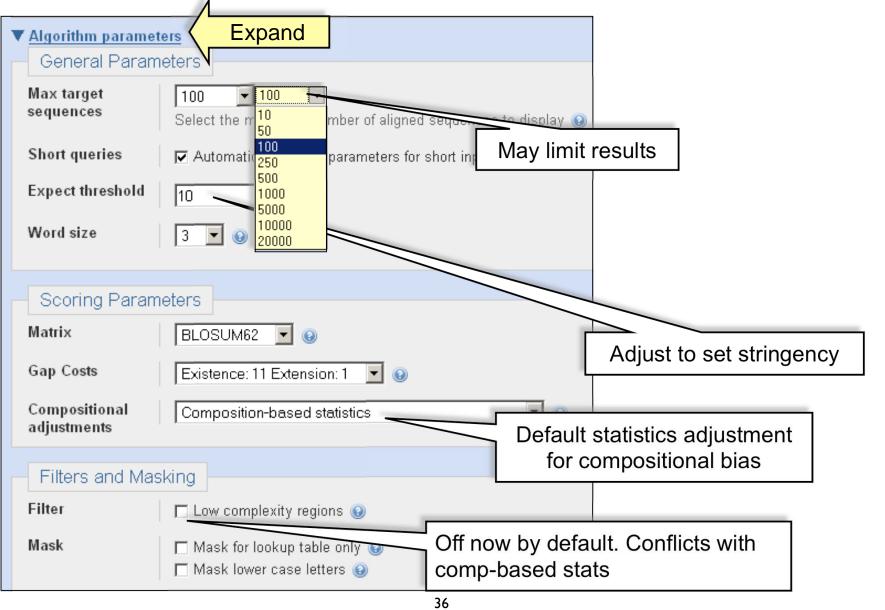


Enter Query S	equence	
Enter accession n 231571	umber, gi, or FASTA sequence (a) Clear Query subrange (a) From	
Or, upload file Job Title	Browse (a) Q02067:Achaete-scute homolog 1 (Mash-1) Enter a descriptive title for your BLAST search (a)	
Choose Searc	h Set Swissprot protein sequences(swissprot)	
Organism Optional	Enter organism name or idcompletions will be suggested Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown. 🔞	
Entrez Query Optional	Enter an Entrez query to limit search 🔞	Let's look at
Program Sele	ction	some of the
Algorithm	 blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PHI-BLAST (Pattern Hit Initiated BLAST) Choose a BLAST algorithm () 	options!
BLAST	Search database swissprot using Blastp (protein-protein BLAST)	


Context Specific Help


Database	Swissprot protein sequences(swissprot) 💽 🥘
	Select the sequence database to run searches against. No BLAST database contains all the sequences at NCBI. BLAST databases are organized by informational content (nr, RefSeq, etc.) or by sequencing technique (WGS, EST, etc.). <u>more</u>
Organism Optional	Enter organism name or idcompletions will be suggested
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown. 😡 🌖
	Select from the list or choose "Custom" to enter the name of an organism. The search will be restricted to the sequences in the database which are from the organism selected.
Entrez Query Optional	
	Enter an Entrez query to limit search 🛞
	You can use Entrez query syntax to search a subset of the selected BLAST database. This can be helpful to limit searches to molecule types, sequence lengths or to exclude organisms. more

Limiting Database: Organism



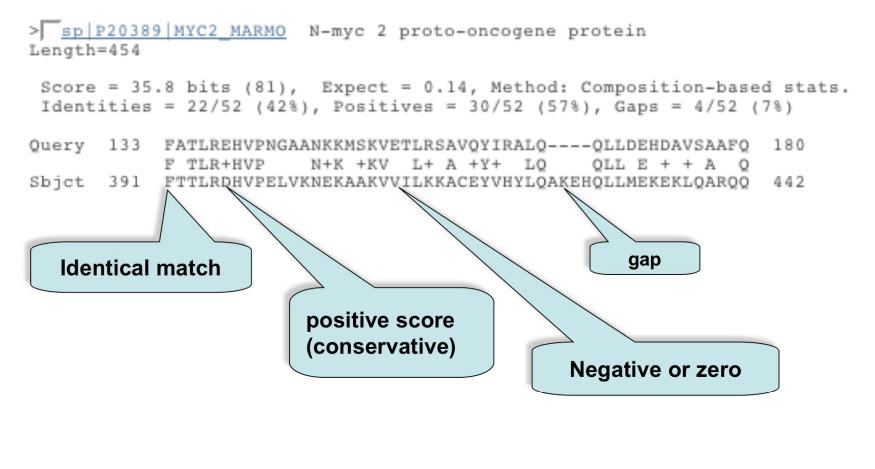
Limiting Database: Entrez Query

Algorithm parameters: Protein

Automatic Short Sequence Adjustment

Job Title: Elvis Lives!	> <u>ref ZP 01712014.1 </u> conserved hypothetical protein [Pseudomonas put Length=245
No putative conserved domains have been detected	Score = 18.5 bits (36), Expect = 15305 Identities = 5/5 (100%), Positives = 5/5 (100%), Gaps = 0/5 (0%)
Your search parameters were adjusted to search for a short input sequence.	Query 1 ELVIS 5
WAITING	ELVIS Sbjct 126 ELVIS 130
Request ID 1WSB0FX012 Status Searching	> <u>ref ZP 01712512.1 </u> Substrate-binding region of ABC-type glycine be system [Pseudomonas putida GB-1] Length=342
Subr	Score = 18.5 bits (36), Expect = 15305 Identities = 5/5 (100%), Positives = 5/5 (100%), Gaps = 0/5 (0%)
Curre e-value 20000	Query 1 ELVIS 5 ELVIS Sbjct 172 ELVIS 176
Word Size 2	> <u>ref[XP_001366374.1]</u> G PREDICTED: similar to R7 binding protein [Mo
Matrix PAM30	Length=257
	Score = 18.5 bits (36), Expect = 15305 Identities = 5/5 (100%), Positives = 5/5 (100%), Gaps = 0/5 (0%)
Comp Stats Off	Query 1 ELVIS 5 ELVIS 70
-	Sbjct 69 ELVIS 73
Low Comp Filter Off	> <u>ref ZP 01711731.1 </u> GCN5-related N-acetyltransferase [Caldivirga ma Length=166
	Score = 18.5 bits (36), Expect = 15305 Identities = 5/5 (100%), Positives = 5/5 (100%), Gaps = 0/5 (0%)
	Query 1 ELVIS 5 ELVIS
37	Sbjct 20 ELVIS 24

Enter Query S	equence
Enter accession n	umber, gi, or FASTA sequence 🔞 <u>Clear</u> Query subrange 😡
	D2067 ASCL1_MOUSE Achaete-scute homolog 1
(Mash-1)	From
	OPPOPFLPPAACFFATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	RSAVQYIRALQQLLDBHDAVSAAFQAGVLSPTISPNYSNDLNSMAGS
 Or, upload file 	
-	Browse 0
Job Title	MASH1 BLAST for CBW
	Enter a descriptive title for your BLAST search 😡
Choose Searc	
Choose Searc	
Database	Swissprot protein sequences(swissprot) 🔽 😡
Organism	
Optional	Enter organism name or idcompletions will be suggested
Entrez Query	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown. 📀
Optional	
	Enter an Entrez query to limit search 🔞
Program Sele	ction
Algorithm	blastp (protein-protein BLAST)
	O PSI-BLAST (Position-Specific Iterated BLAST)
	O PHI-BLAST (Pattern Hit Initiated BLAST)
	Choose a BLAST algorithm 😡
BLAST	Search database swissprot using Blastp (protein-protein BLAST)
	Show results in a new window
	38


Home Recent Results	Basic Local Alignmen Saved Strategies Help	it Search Tool	My NCBI [Sign In] [Regist
ICBI/ BLAST/ blastp suite/ Form	tting Results - T9U0ZFN4011 [Formatting op	tions]	
b Title: Q02067:RecName:	Full=Achaete-scute homolog		
Putativ	e conserved domains have been detected, cl	ick on the image below for	detailed results.
Query seq.	50 75 100	125 150	175 200 225 231
luery sey.	dimerizatio	DNA binding region 🗛	A44
pecific hits		HLH	
Superfamilies		HLH superfami	ly
Request ID	T9U0ZFN	4011	
Status	Searching		
Submitted at	Thu Feb 1	2 22:25:19 2009	
Current time	Thu Feb 1	2 22:25:26 2009	
	00:00:06		

A graphical view

Show Conserved I	Domains
	Putative conserved domains have been detected, click on the image below for detailed results.
Query seq.	
euci y scy.	DNR binding region 🔥
Specific hits	HLH
Superfamilies	HLH superfamily
	Distribution of 100 Blast Hits on the Query Sequence 🛞
	Mouse-over to show defline and scores, click to show alignments
	Color key for alignment scores
	<40 40-50 50-80 80-200 >=200
	Query

BLAST Home NCBI/ BLAST Edit and Q02067: Des HUII=MaSII-1	
Molecule type amino acid	DENSITY 2.2.19T & CILOUNI
Query Length 231 Other reports: >Search Summary [Taxonomy reports] [Distance tree of results]	
Graphic Summary	
▼ <u>Descriptions</u>	
Sequences producing significant alignments: (Bits)	Value
sp Q02067.1 ASCL1 MOUSE RecName: Full=Achaete-scute homolog 1 466	4e-131 G 4e-95 G
sp P19359.1 ASCL1 RAT RecName: Full=Achaete-scute homolog 1 347 sp P50553.2 ASCL1 HUMAN RecName: Full=Achaete-scute homolog 1 332	4e-95 1e-90 G
sp Q90259.1 ASLIA DANRE RecName: Full=Achaete-scute homolog 1 298	le-80 G
sp Q06234.1 ASCL1 XENLA RecName: Full=Achaete-scute homolog 1 289	9e-78 G
sp Q90260.1 ASL1B DANRE RecName: Full=Achaete-scute homolog 1 217	3e-56 G
sp Q2EGB9.1 ASCL2 BOVIN RecName: Full=Achaete-scute homolog 2 135	le-31 G
sp Q99929.2 ASCL2 HUMAN RecName: Full=Achaete-scute homolog 2 124	3e-28 G
sp P19360.1 ASCL2 RAT RecName: Full=Achaete-scute homolog 2; 106	8e-23 G
sp 035885.2 ASCL2 MOUSE RecName: Full=Achaete-scute homolog 2 103	1e-21 G
sp Q7RTU5.2 ASCL5 HUMAN RecName: Full=Achaete-scute homolog 5 80.5	6e-15 G
sp Q6XD76.1 ASCL4 HUMAN RecName: Full=Achaete-scute homolog 4 78.2	4e-14 G
sp Q9NQ33.2 ASCL3 HUMAN RecName: Full=Achaete-scute homolog 3 75.9	2e-13 G
spQ9JJR7.1ASCL3 MOUSE RecName:RecName:Full=Achaete-scute homolog75.1spP10083.1AST5 DROME RecName:RecName:Full=Achaete-scute complex pr74.7spP10084.2AST4 DROME RecName:Full=Achaete-scute complex pr71.6	3e-13 3e-13 3e-12
sp Q10007.1 HLH6 CAEEL RecName: Full=Helix-loop-helix protein 6 64.3	5e-10 G

BLAST Alignments

DELASTAGISCON DE LA COMPOSITION DE LA COMPOSITIO

F TLR+HVP N+K +KV L+ A +Y+ +LQ QLL E + + A Q Sbjct 401 FLTLRDHVPELVKNEKAAKVVILKKATEYVHSLQAEEHQLLLEKEKLQARQQ 452

><mark>sp|Q02363|ID2 HUMAN</mark> **G** DNA-binding protein inhibitor ID-2 (Inhibitor of DNA binding 2) Length=134

Score = 35.4 bits (80), Expect = 0.025, Method: Composition-based stats. Identities = 19/47 (40%), Positives = 29/47 (61%), Gaps = 0/47 (0%)

Query 129 VNLGFATLREHVPNGAANKKMSKVETLRSAVQYIRALQQLLDEHDAV 175 +N ++ L+E VP+ NKK+SK+E L+ + YI LQ LD H + Sbjct 39 MNDCYSKLKELVPSIPQNKKVSKMEILQHVIDYILDLQIALDSHPTI 85

> sp | P12980 | LYL1 HUMAN G Protein lyl-1 (Lymphoblastic leukemia-derived sequence 1) Length=267

```
Score = 35.4 bits (80), Expect = 0.025, Method: Composition-based stats.
Identities = 22/50 (44%), Positives = 31/50 (62%), Gaps = 0/50 (0%)
```

Query 129 VNLGFATLREHVPNGAANKKMSKVETLRSAVQYIRALQQLLDEHDAVSAA 178 VN FA LR+ +P ++K+SK E LR A++YI L +LL + A AA Sbjct 153 VNGAFAELRKLLPTHPPDRKLSKNEVLRLAMKYIGFLVRLLRDQAAALAA 202

• Similarity

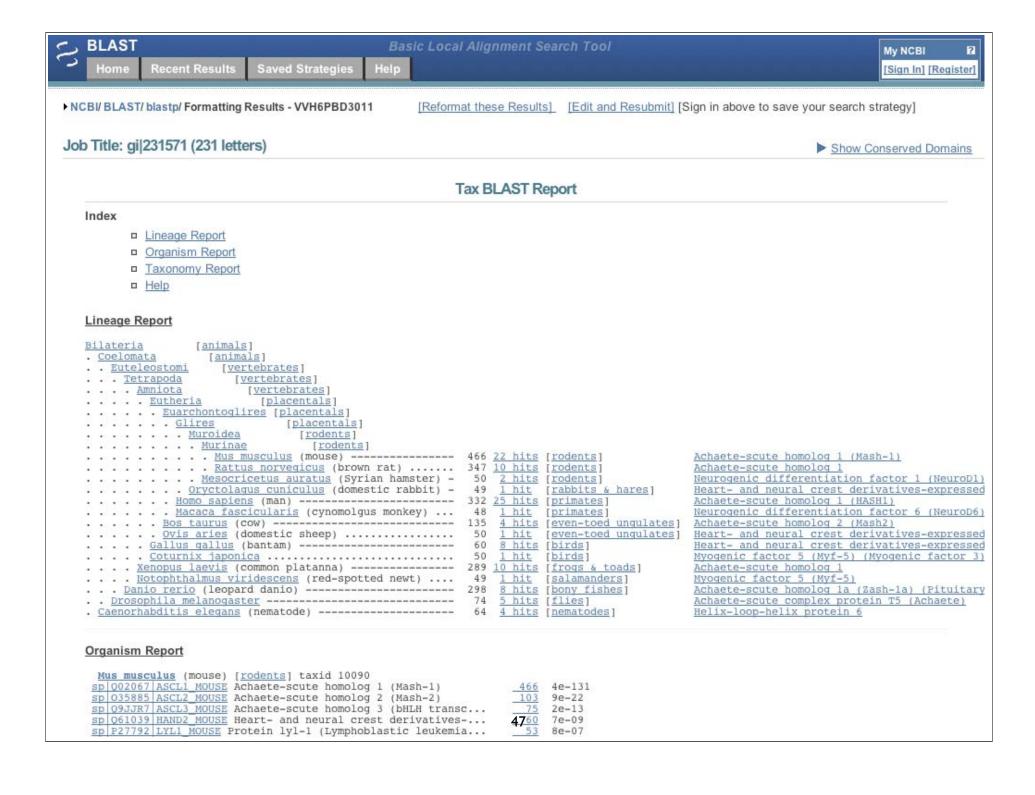
The extent to which nucleotide or protein sequences are related. The extent of similarity between two sequences can be based on percent sequence identity and/or conservation. In BLAST similarity refers to a positive matrix score.

• Identity

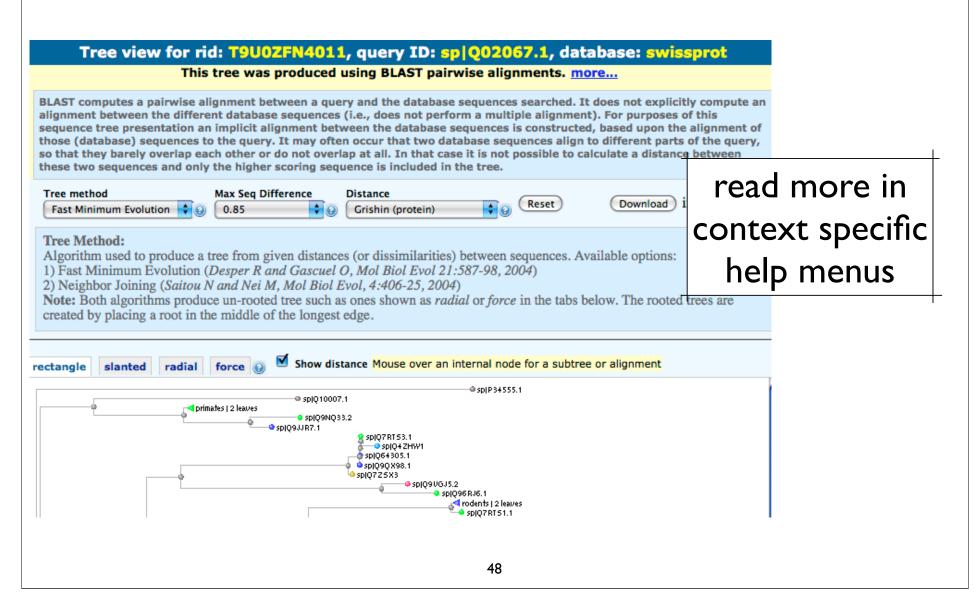
The extent to which two (nucleotide or amino acid) sequences are invariant.

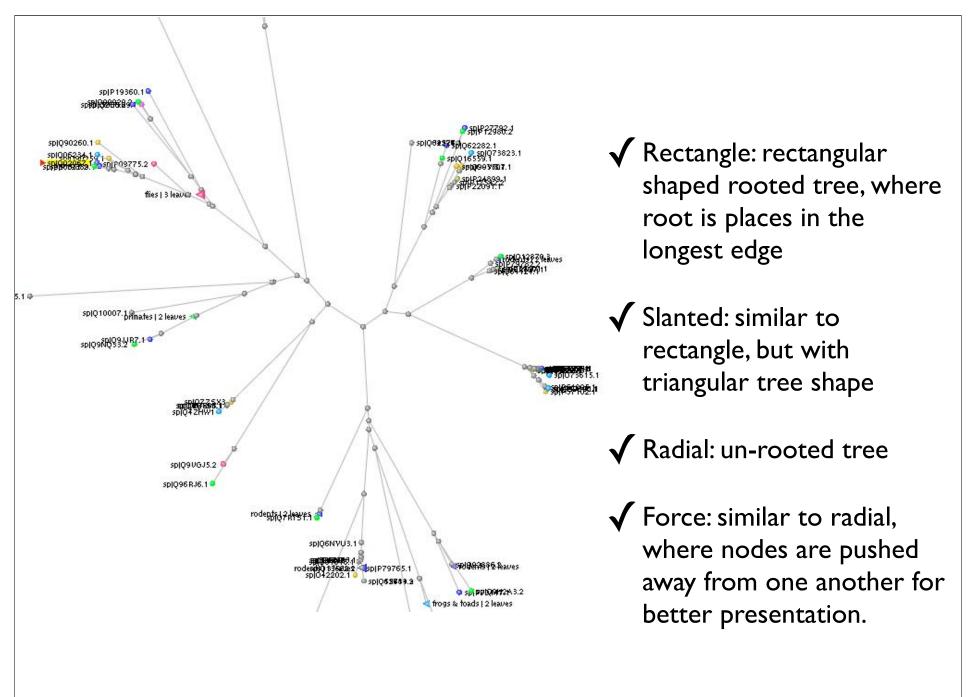
Homology

Similarity attributed to descent from a common ancestor.


It is your responsibility as an informed bioinformatician to use these terms correctly: A sequence is either homologous or not. Don't use % with this term!

Re-Format and/or Download your BLAST results


Edit and Resubmit	Save Searc	ch Strategies ▼Formatting options ▼Download	
		Formatting options Reforma	t
	Show	Alignment 🗾 as HTML 🗾 🗆 Advanced View 🗎 Use old BLAST report format	dei Sits
Alig	gnment View	Pairwise	Θ
	Display	Graphical Overview Linkout Sequence Retrieval NCBI-gi	Θ
		Masking Character: Lower Case Masking Color: Grey	Θ
L	Limit results	Descriptions: 100 - Graphical overview: 100 - Alignments: 100 -	Θ
		Organism Type common name, binomial, taxid, or group name. Only 20 top taxa will be shown.	
		Entrez query:	Excel
		Expect Min: Expect Max:	
	Format for	PSI-BLAST with inclusion threshold:	
		Download	
		Alignment Search Strategies Bioseq Text XML ASN.1 Hit Table(text) Hit Table(csv) ASN.1 ASN.1	
		Alignment VL Search Strategies Bloseq Text XML ASN.1 Hit Table(text) Hit Table(csv) ASN.1 ASN.1	_
		45 Search Strategies Biosed	


Sorting BLAST by Taxonomy

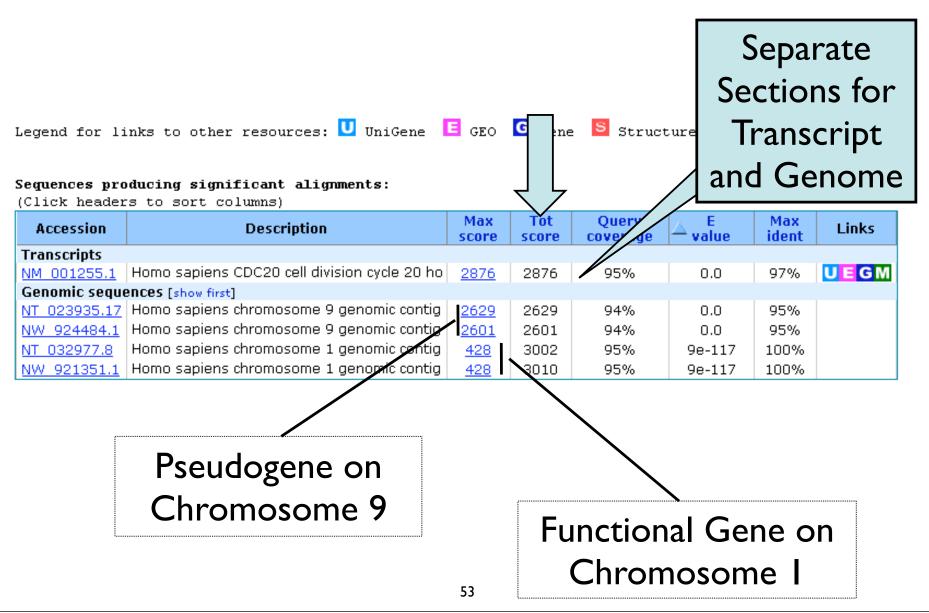
BLAST			Basic Local Alig	nment Search 1	Tool		My NCBI
Home Recent	Results Saved	l Strategies	Help		والمحمد المحمد المت	والمواصور البدوان والمواصور البدر المواتي	[Sign In] [R
NCBI/ BLAST/ blastp s	uite/ Formatting R	lesults - T9U0	ZFN4011				
Edit and Resubmit	Save Search S	trategies >	Formatting options	▶ Download			
Q02067:RecNan	ne: Full=Acha	ete-scute h	iomolog				
Description	Full=Mash-1		CL1_MOUSE te homolog 1; AltNam		scription	swissprot Non-redundant SwissProt sequences BLASTP 2.2.19+ Citation	
Molecule type Query Length Other reports: D Graphic Sumn Descriptions	231 Search Summa	r [Taxonomy	reports] Distance tre	ee of results]			
Query Length Other reports: ▷ Graphic Summ Descriptions Sequences sp Q02067. sp P19359. sp P50553.	231 Search Summa nary producing sign 1 ASCL1 MOUSE 1 ASCL1 RAT F	nificant ali RecName: Ful RecName: Ful RecName: Ful		e homolog 1 homolog 1 e homolog 1	<u>466</u> <u>347</u> <u>332</u>	E Value 4e-131 G 4e-95 G 1e-90 G 1e-80 G	

Distance Tree of Results

Nucleotide BLAST


	Basic Local Alignmer	nt Search Tool	My NCBI
Home Recent Results Sa	aved Strategies Help		Welcome joannealisonfox. [
BI/ BLAST Home			News
BLAST finds regions of simila	rity between biological sequences. more	- (
Learn more about how to use th	e new BLAST design		New Human and Mouse pre-indexed databases
			Human and mouse genomic + transcript megablast searches now
BLAST Assembled Geno	mes		use a faster, indexed algorithm that
Choose a species genome to sea	arch, or <u>list all genomic BLAST databases</u> .		typically reduces run time by two thirds, as compared with standard
Human	Oryza sativa	Gallus gallus	megablast. 2007-09-04 10:55:00
Mouse	Bos taurus	Pan troglodytes	D Har Di ADT
□ Rat	Danio rerio	□ Microbes	More BLAST news
Arabidopsis thaliana	Drosophila melanogaster	Apis mellifera	
Basic BLAST			Tip of the Day
Choose a BLAST program to run.	5		Using Genomic BLAST
			Genomic BLAST pages are helpful
	ucleotide database using a nucleotide query		because they allow the genomic
Algorith	hms: blastn, megablast, discontiguous megal	blast	context of a BLAST search to be
Search pro	tein database using a protein query		displayed in the Map Viewer. For
	hms: blastp, psi-blast, phi-blast		example, discontiguous (cross-species) MegaBLAST again
Algoriti	tein database using a translated nucleotide	query	the human RefSeq transcript for albumin (NM_000477) can be used
100 million (100 m			
<u>blastx</u> Search pro	slated nucleotide database using a protein	query	identify the homolog in the rat genor

nt BLAST: New Output


▶ NCBI/ BLAST/ blastn suite: BLASTN programs search nucleotide databases using a nucleotide query. more...

Enter Query S	
Enter accession n	umber, gi, or FAST ABI68636
>trab eating mad	caque CDC20 mRNA
ACGGGCTCCGCAGGC	ACCAACTGCAAGGACCCCTCCCGCTGCGGGCGTTCCCATGGCACAAT
	ICGCTGCTTCAGCTGGATGCACCCATCCCCAATGCACCCCTGCGCG
•	
Or, upload file	Browse 💿
Job Title	Crab eating macaque CDC20 mRNA
	Enter a descriptive title for your BLAST search (2)
Choose Searc	h Set
Database	● Human genomic + transcript ● Mouse genomic + transcript ● Others (nr etc.):
	Human genomic plus transcript 💿
Entrez Querv	
Entrez Query Optional	Enter an Entrez query to limit search 😡

Algorithm parameters: Nucleotide

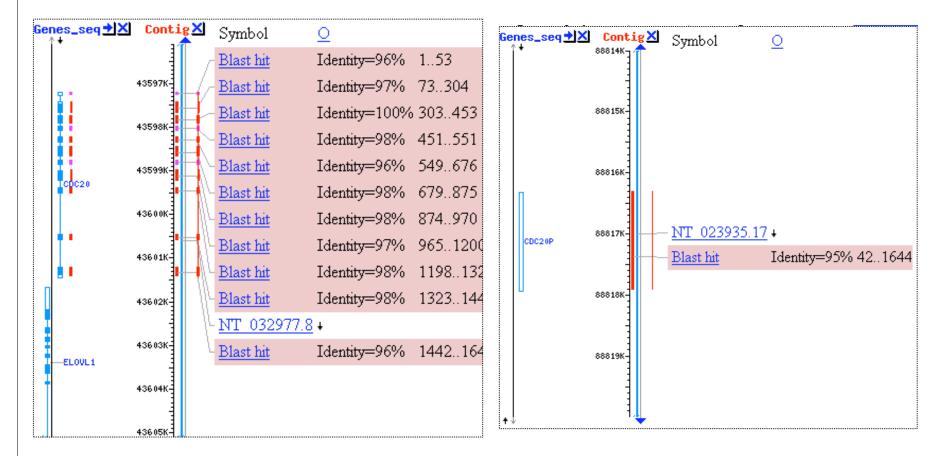
Sortable Results

Total Score: All Segments

Legend for links to other resources	: U UniGene 🔳 G	GEO 🖸 Gene 🗧 S	Structure M Map Viewer
-------------------------------------	-----------------	----------------	------------------------

Sequences producing significant alignments:

(Click headers to sort columns)


Accession	Description	Max score	△ Tot score	Query coverage	E value	Max ident	Links
Transcripts				-			
NM 001255.1	Homo sapiens CDC20 cell division cycle 20 hc	<u>2876</u>	2876	95%	0.0	97%	UEGM
Genomic seque	ences [show first]						
<u>NW 921351.1</u>	Homo sapiens chromosome 1 genomic contig	<u>428</u>	3010	95%	9e-117	100%	
<u>NT 032977.8</u>	Homo sapiens chromosome 1 genomic contig	428	3002	95%	9e-117	100%	
NT 023935.17	Homo sapiens chromosome 9 genomic contig	<u>2629</u>	8629	94%	0.0	95%	
<u>NW 924484.1</u>	Homo sapiens chromosome 9 genomic contig	<u>2601</u>	2601	94%	0.0	95%	
				-			
				\mathbf{i}			

Sorting in Exon Order

```
> ref NT 032977.8 Hs1 33153 D Homo sapiens chromosome 1 genomic contig, reference assembly
Length=73835825
                                                          Sort alignments for this subject sequence by:
                                                            E value Score Persent identity
                                                            Querv start position Subject start position
           Features flanking this part of subject sequence:
Features in
             6169 bp at 5' side: myeloproliferative leukemia virus oncogene
  cell div:
             223 bp at 3' side: cell division cycle 20
 Score = 42 Score = 89.7 bits (45), Expect = 1e-14
 Identities Identities = 51/53 (96%), Gaps = 0/53 (0%)
Strand=Plus Strand=Plus/Plus
Query 965 Query 1
                        AGCGGAGAGTTTAAGAGGCGTAAGCGAGGCGTGTTAAACCCGGTCGGAACTGC 53
                        Sbjct 1379 Sbjct 13796530 AGCGGAGAGTTTAAGAGGCGTAAGCCAGGCGTGTTAAAGCCGGTCGGAACTGC 13796582
Query 1025
                                                                        Query start
           Features in this part of subject sequence:
             cell division cycle 20
Sbict 13798
                                                                           position
           Score = 412 bits (208), Expect = 5e-112
                                                                        Exon order
           Identities = 226/232 (97%), Gaps = 0/232 (0%)
 Defa
           Strand=Plus/Plus
          Query 73
                        GGGCTCCGCAGGCACCAACTGCAAGGACCCCTCCCGCTGCGGGCGTTCCCATGGCACAAT 132
    LO
                        Sbjet 13796755 GGGCTCCGTAGGCACCAACTGCAAGGACCCCTCCCCCTGCGGGCGCCCCCATGGCACAGT 13796814
          Querv 133
                        TCGCGTTCGAGAGTGACCTGCACTCGCTGCTTCAGCTGGATGCACCCATCCCCAATGCAC
                                                                           192
                        Sbjet 13796815 TCGCGTTCGAGAGTGACCTGCACTCGCTGCTTCAGCTGGATGCACCCCATCCCCAATGCAC 13796874
                                                55
```

Links to Map Viewer

Chromosome I

Chromosome 9

Recent and Saved Strategies

BI/ BLAST/ Rece Links to your t	unexpired BLAS	T jobs aj	opear belov	w. <u>more</u>		BI to				
Request ID: j	Results		Go		save s					
	sort columns)									
(Click headers to Submitted at	Request ID	Status	Program	Title		Qlength	Database	Expires at		
(Click headers to Submitted at 09-26 18:40	wards and the second	Status Done	Program blastp	Title Q02067:Achaete-scute homo	vlog 1 (Mash-1)	Qlength 231	Database swissprot	Expires at 09-28 06:40	save	×
Submitted at	Request ID								save save	×
Submitted at 09-26 18:40	Request ID ENRZKDEZ012	Done	blastp	Q02067:Achaete-scute homo	o seperate HSPs	231	swissprot	09-28 06:40		
Submitted at 09-26 18:40 09-26 18:20	Request ID FNRZKDEZ012 FNPT3VP9015	Done Done	blastp blastp	Q02067:Achaete-scute homo unknown protein - predict two	o seperate HSPs ORLD p. 135	231 169	swissprot	09-28 06:40 09-28 06:20	save	×

Genomic and Specialized BLAST pages

BLAST Assembled Genomes

Choose a species genome to search, or list all genomic BLAST databases.

- Human
- Mouse
- Rat
- Arabidopsis thaliana
- <u>Oryza sativa</u>
 Bos taurus
- DOS taurus
- Danio rerio
- Drosophila melanogaster
- Gallus gallus
- Pan troglodytes
- Microbes
- Apis mellifera

Specialized BLAST

Choose a type of specialized search (or database name in parentheses.)

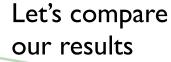
- Make specific primers with <u>Primer-BLAST</u>
- Search trace archives
- Find <u>conserved domains</u> in your sequence (cds)
- Find sequences with similar <u>conserved domain architecture</u> (cdart)
- Search sequences that have gene expression profiles (GEO)
- Search immunoglobulins (IgBLAST)
- Search for <u>SNPs</u> (snp)
- Screen sequence for <u>vector contamination</u> (vecscreen)
- Align two sequences using BLAST (bl2seq)
- Search protein or nucleotide targets in PubChem BioAssay

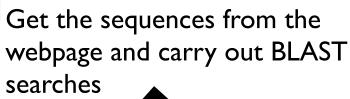
Service Addresses

General Help info@ncbi.nlm.nih.gov BLAST blast-help@ncbi.nlm.nih.gov

Telephone support: 301-496-2475

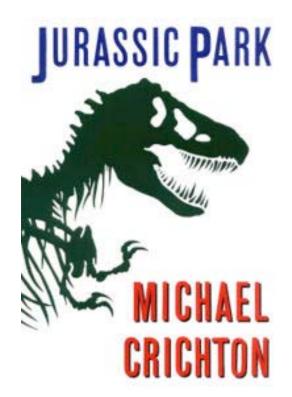
BLAST


PRACTICAL EXERCISE: The Jurassic Park Detective Story



navigate to: bioteach.ubc.ca/bioinfo2009

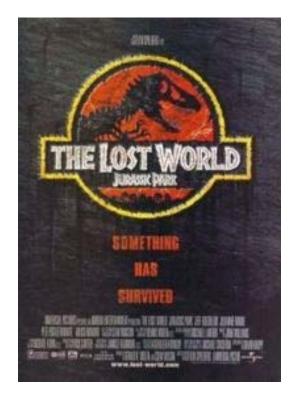
Can you identify the Dinosaur sequences?


Search #1: Jurassic Park		Search #2: The Lost World
sequence		sequence
use blastn	61	use blastx

Try some BLAST searches with your own sequence of interest...

Explore what happens when you change advanced parameters...

Search #1 - blastn against nr


- Most common use of blastn
 - \checkmark Sequence identification
 - Establish whether an exact match for a sequence is already present in the database

Jgi 157064989 gb EU118176.1 Cloning vector pCM433, complete sequence Length=8081

Sort alignments for this subject sequence by: E value Score Percent identity Query start position Subject start position Score = 437 bits (484), Expect = 4e-119 Identities = 297/340 (87%), Gaps = 40/340 (11%) Strand=Plus/Plus Query 1 GCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAATCGACGC 60 GCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGC 7368 Sbict 7309 Query 61 -----GGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGA 110 Sbjet 7369 TCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGA 7428 AGCTCCCTCG-----TGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTT 160 Query 111 Sbjct 7429 AGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTT 7488 Query 161 CTCCCTTCGGGAAGCGTGGC-----TGCTCACGCTGTACCTATCTCAGTTCGGTG 210 Sbjct 7489 CTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTG 7548 Query 211 TAGGTCGTTCGCTCCAAGCTGGGCTGTGTG-----CCGTTCAGCCCGACCGCTGC 260 TÁGGTCGTTCGCTCCAÁGCTGGGCTGTGTGCACGAACCCCCCCGTTCÁGCCCGACCGCTGC 7608 Sbjct 7549 Query 261 GCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAA 300 Sbjct 7609 GCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAA 7648 Score = 536 bits (594), Expect = 6e-149 Identities = 360/410 (87%), Gaps = 50/410 (12%) Strand=Plus/Plus Query 302 GTAGGACAGGTGCCGGCAGCGCTCTGGGTCATTTTCGGCCGAGGACCGCTTTCGCTGGAG- 360 Sbjct 3591 GTAGGACAGGTGCCGGCAGCGCTCTGGGTCATTTTCGGCGAGGACCGCTTTCGCTGGAGC 3650 -----ATCGGCCTGTCGCTTGCGGTATTCGGAATCTTGCACGCCCTCGCTCAAGCC 411 Ouerv 361 Sbjet 3651 GCGACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCTTGCACGCCCTCGCTCAAGCC 3710 TTCGTCACT-----CCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATG 461 Ouerv 412 Sbjct 3711 TTCGTCACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATG 3770 Query 462 ĠĊĠĠĊĊĠĂĊĠĊĠĊŤĠĠĠĊŤACGTCTTGCTĠĠĊĠŤŤĊĠĊĠĂĊĠĊĠĂĠĠĊŤĠĠĂŤĠĠĊĊŤŤĊ Sbjct 3771 3830 Query 512 CCCATTATGATTCTTCTCGCTTCCGGCG-----GCCCGCGTTGCAGGCCATGCTG 561 Sbjct 3831 CCCATTATGATTCTTCTCGCTTCCGGCGGCATCGGGATGCCCGCGTTGCAGGCCATGCTG 3890 Query 562 TCCAGGCAGGTAGATGACGACCATCAGGGACAGCTTCAA-----CGGCTCTTACC 611 Query 612 AGCCTAACTTCGATCACTGGACCGCTGATCGTCACGGCGATTTATGCCGC 661 Sbjct 3951 AGCCTAACTTCGATCACTGGACCGCTGATCGTCACGGCGATTTATGCCGC 4000

Search #2 - blastx against nr

- Translating BLAST programs (blastx, tblastn, tblastx)
 - \checkmark Look for similar proteins
 - ✓ Identify potential homologs in other species


```
> gi 45382623 ref NP 990795.1 UG erythroid-specific transcription factor eryf1 [Gallus gallus]
 gi | 120955 | sp | P17678 | GATA1 CHICK G Erythroid transcription factor (GATA-binding factor 1) (GATA-1)
(Eryfl) (NF-El DNA-binding protein) (NF-ElA)
                         UG Eryfl protein
 gi 212629 gb AAA49055.1
Length=304
 Score = 366 bits (940), Expect = 2e-99
 Identities = 304/318 (95%), Positives = 304/318 (95%), Gaps = 14/318 (4%)
 Frame = +1
Query 121
             MEFVALGGPDAGSPTPFPDeagaflglgggerteaggllaSYPPSGRVSLVPWADTGTLG
                                                                           300
             MEFVALGGPDAGSPTPFPDEAGAFLGLGGGERTEAGGLLASYPPSGRVSLVPWADTGTLG
             MEFVALGGPDAGSPTPFPDEAGAFLGLGGGERTEAGGLLASYPPSGRVSLVPWADTGTLG
                                                                           6.0
Sbjct 1
Query 301
             TPQWVPPATQMEPPHYLE11gpprgspphpssgp11plssgpppCEARECVMARKNCGAT
                                                                           480
             TPOWVPPATOMEPPHYLELLOPPRGSPPHPSSGPLLPLSSGPPPCEARECV
                                                                    NCGAT
Sbjct
      61
             TPOWVPPATOMEPPHYLELLOPPRGSPPHPSSGPLLPLSSGPPPCEARECV
                                                                    NCGAT
                                                                           116
Query 481
             ATPLWRRDGTGHYLCNWASACGLYHRLNGQNRPLIRPKKRLLVSKRAGTVCSHERENCQT
                                                                           660
                                ACGLYHRLNGONRPLIRPKKRLLVSKRAGTVCS
                                                                     NCOT
             ATPLWRRDGTGHYLCN
Sbjct
      117
             ATPLWRRDGTGHYLCN --- ACGLYHRLNGQNRPLIRPKKRLLVSKRAGTVCS
                                                                     NCOT
                                                                           169
             STTTLWRRSPMGDPVCNNIHACGLYYKLHQVNRPLTMRKDGIQTRNRKVsskgkkrrppg
                                                                           840
      661
Query
             STTTLWRRSPMGDPVCN
                                 ACGLYYKLHQVNRPLTMRKDGIQTRNRKVSSKGKKRRPPG
             STTTLWRRSPMGDPVCN
                                 ACGLYYKLHQVNRPLTMRKDGIQTRNRKVSSKGKKRRPPG
Sbjct 170
                                                                           226
Query 841
                                                                           1020
             ggnpsatagggapmggggdpsmpppppppaaappQSDALYALGPVVLSGHFLPfgnsggf
             GGNPSATAGGGAPMGGGGDPSMPPPPPPAAAPPOSDALYALGPVVLSGHFLPFGNSGGF
             GGNPSATAGGGAPMGGGGDPSMPPPPPPAAAPPOSDALYALGPVVLSGHFLPFGNSGGF
Sbjct
      227
                                                                           286
Ouerv
      1021
            fgggaggYTAPPGLSPOI 1074
             FGGGAGGYTAPPGLSPQI
Sbjct 287
            FGGGAGGYTAPPGLSPOI 304
```

Mark was here, NIH

BLAST

COMMON TASKS - Basic Search; Searching Sets of Sequences (multiple inputs; small custom databases); Primer Design

Research article

Open Access

A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

Ben F Koop^{*1,6}, Kristian R von Schalburg¹, Jong Leong¹, Neil Walker¹, Ryan Lieph¹, Glenn A Cooper¹, Adrienne Robb¹, Marianne Beetz-Sargent¹, Robert A Holt², Richard Moore², Sonal Brahmbhatt³, Jamie Rosner³, Caird E Rexroad III⁴, Colin R McGowan⁵ and William S Davidson⁵

Address: ¹Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada, ²Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, V5Z 486, Canada, ³Prostate Centre, Vancouver, British Columbia, V6H 3Z6, Canada, ⁴ARS, USDA, Natl Ctr Cool & Cold Water Aquaculture, Kearneysville, WV 25430, USA, ⁵Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada and ⁶Department of Biology, University of Victoria, P.O. Box 3020, Victoria, British Columbia, V8W 3N5, Canada

Email: Ben F Koop* - bkoop@uvic.ca; Kristian R von Schalburg - krvs@uvic.ca; Jong Leong - jong@uvic.ca; Neil Walker - nwalker@uvic.ca; Ryan Lieph - handsomryan@gmail.com; Glenn A Cooper - gac@uvic.ca; Adrienne Robb - arobb@uvic.ca; Marianne Beetz-Sargent - marianbs@uvic.ca; Robert A Holt - rholt@bcgsc.ca; Richard Moore - rmoore@bcgsc.ca; Sonal Brahmbhatt - Sonal.Brahmbhatt@vch.ca; Jamie Rosner - Jamie Rosner@vch.ca; Caird E Rexroad - caird.rexroadIII@ARS.USDA.GOV; Colin R McGowan - cmcgowan@icywaters.com; William S Davidson - wdavidso@sfu.ca

* Corresponding author

Published: 17 November 2008

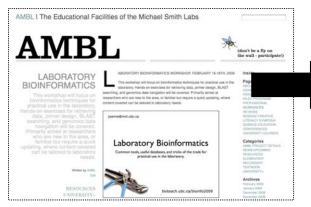
Received: 13 June 2008 Accepted: 17 November 2008

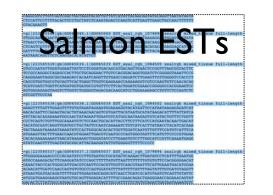
This article is available from: http://www.biomedcentral.com/1471-2164/9/545

© 2008 Koop et al; licensee BioMed Central Ltd.

BMC Genomics 2008, 9:545 doi:10.1186/1471-2164-9-545

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Abstract


Background: Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish.

Results: 298,304 expressed sequence tags (ESTs) from Atlantic salmon (69% of the total), 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmon clones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, gene predictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbow trout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4, 92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show *Salmo* as a sister group to *Oncorhynchus* and *Salvelinus* within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae. Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of the available EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-species hybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species.

Conclusion: An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon, Atlantic salmon and charr are 94–96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and 86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is consistent with an ancestral salmonid genome duplication hypothesis. Genome resources, including a new 32 K microarray, provide valuable new tools to study salmonids.

navigate to: bioteach.ubc.ca/bioinfo2009

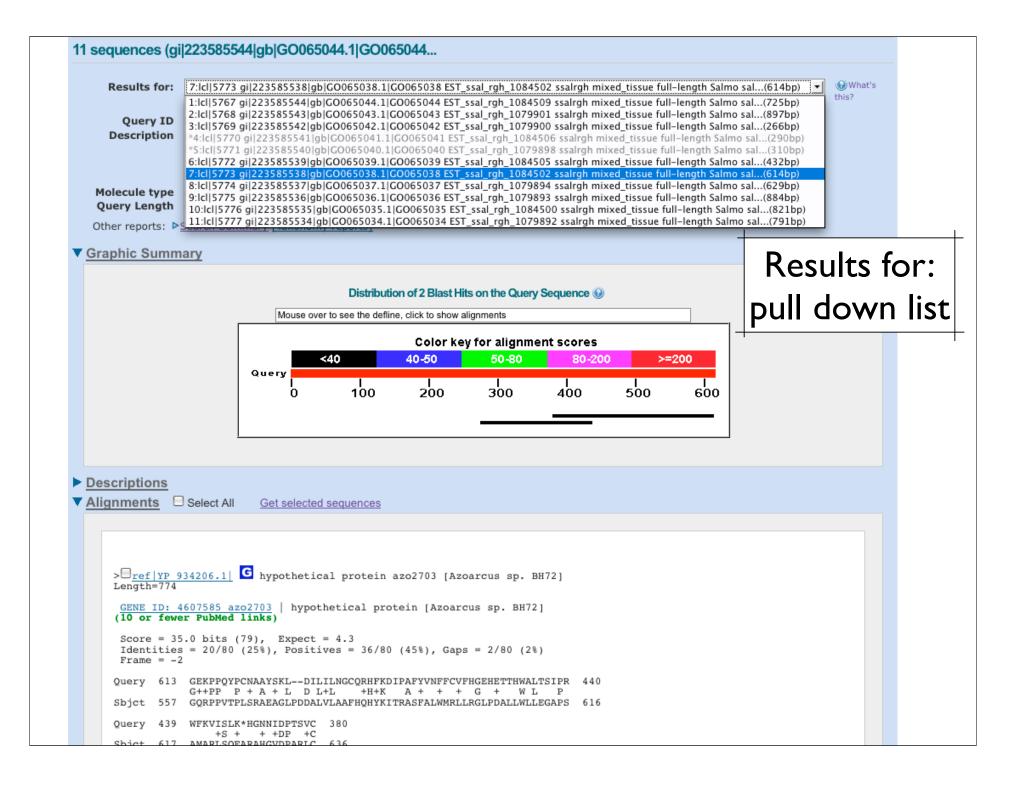
Get the Salmon sequences and carry out the BLAST searches

Can you identify the ESTs?

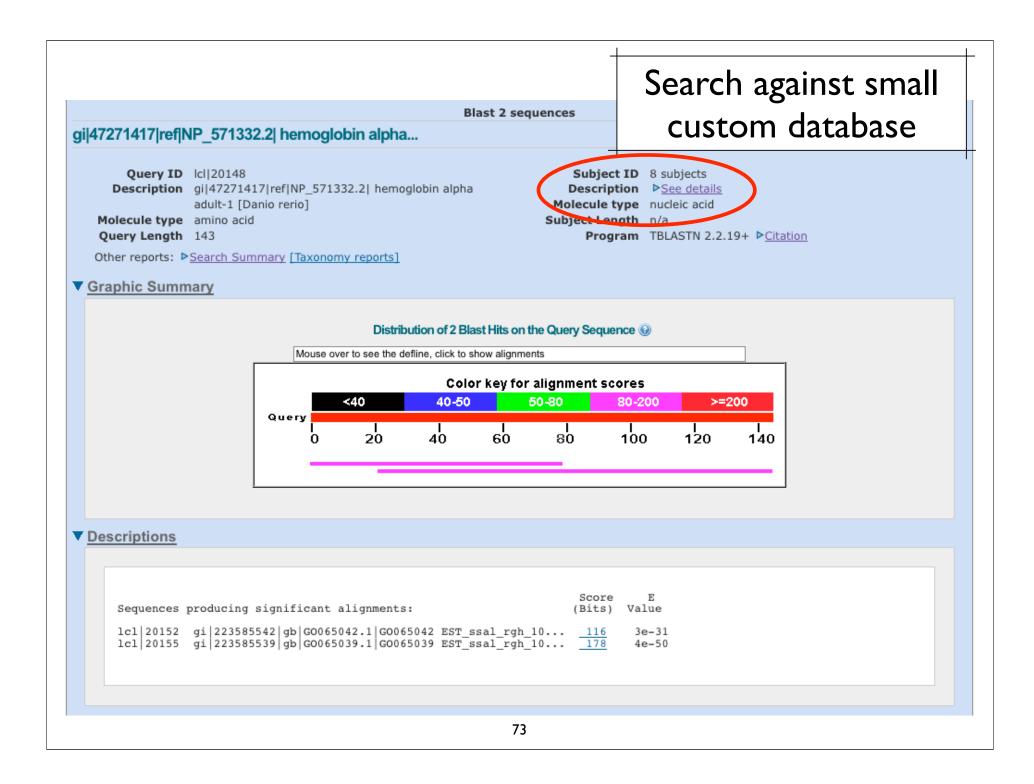
Search #I: Use multiple EST sequences as input query

use blastx

Is the hbaal gene present?


Search #2: Use the hbaa I sequence as input, search against Salmon EST custom database

use blast2seq option with tblastn


We'll walk through this example together

tiento biento bian	da Minate Minata				
Enter Query S	Secuence	BLASTX search pro	serv detabases un	ing a translated matter	make query, margar
Construction of the local division of			5577		
GACACTETTATTSECA	number, gi, or FASTA sec	TTTTTC NUT VIAGATTGATA		Query subrange	
	APEACGACTOTTOTTACAOTOTA TTTCCATTTCTATCTATACAAAAC			From	
			-	To	
C			34141		
Or, upload file		(Browse.)			
Genetic code	Standard (1)	4			
ob Title	8 sequences (pl22358)	5544)gb(GC065044.1)G(065044		_
	Enter a descriptive title t	for your BLAST search	2		
Blast 2 sequer		for your BLAST search			
	nces	lor your BLAST search	,		
Choose Seam	nces	ler ynur BLAST saanth 🕯	,		
	nces				
Choose Sean Database Organism	ch Set	freq_protein)			
Choose Searc	cces ch Set Reference proteins ine	fseq, prittein)	e enter a la companya de		
Choose Sear Database Organism Optimal	ch Set	fseq, prittein)	e enter a la companya de	a will be abasets. 📦	
Choose Searc Database Organism	Acces Ch Set Reference proteins the Transmission common Enter organism common	fseq_pritein)	e enter a la companya de	a will be abasen. 📦	
Choose Sear Database Organism Optimal	cces ch Set Reference proteins ine	fseq_pritein)	e enter a la companya de	a will be schooer, 😜	
Choose Sear Database Organism Optimal	nces ch Set Advence poteins the Enter on Enter operations Enter on Enter operations	fseq_pritein)	9 et Only 20 top tee		ne a translated re

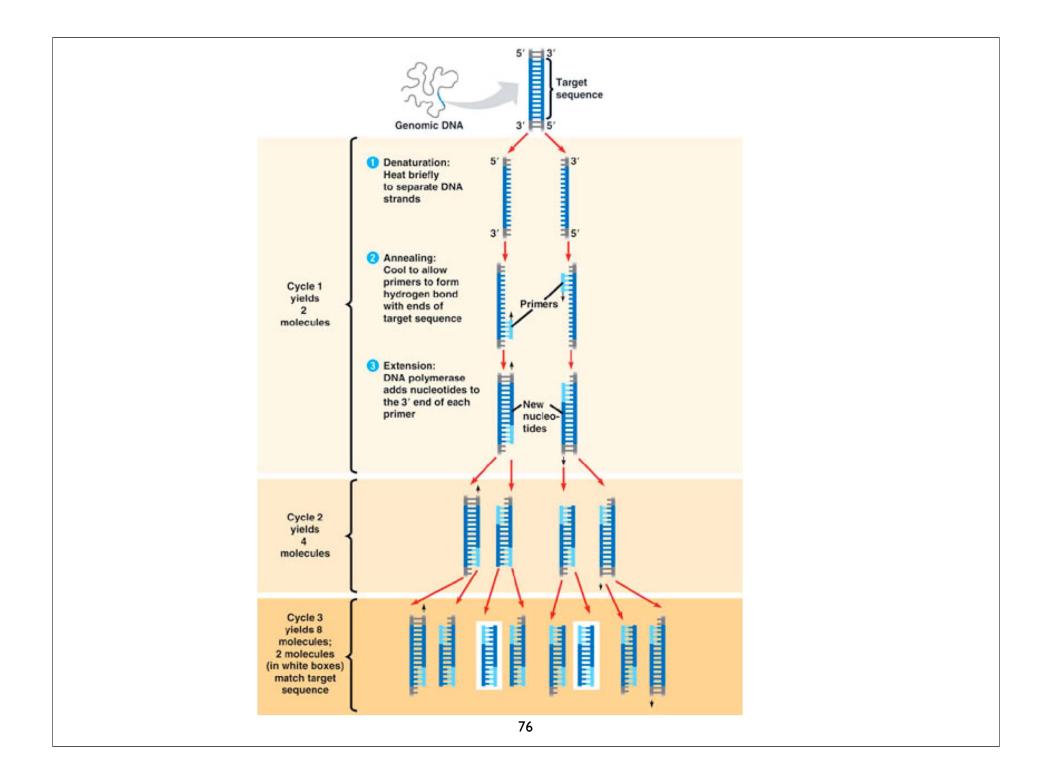
BLAST		Basic Local A	Alignment Search Tool		My NCBI
Home Rece	ent Results Saved Strateg	ies Help	والمواجد المواجع المراجع المواجع		Welcome joannealisonfox. [Sign C
NCBI/ BLAST/ blast	x				
lastn blastr bla	stx <u>Iblastn</u> <u>tblastx</u>				
Enter Query	Sequence	BLASTX search protein	databases using a translated nuc	leotide query. <u>more</u>	Reset page Bookmark
Enter accession	number, gi, or FASTA sequ	ence 😡	Clear Query subrange	C	
GACACTCTTATTGCCA	ATGACATTCAATTCTATAGTTGCCATT AATCACGACTGTTGTTTACAGTGTACT	TTTCTGTGTAGATTGATAATAA	AAAT	Searching w	vith Multiple
	TTTCCATTTCTATCTATACAAAACTT		FIGHT	Sequence	es as Input
C))	To	Sequence	s as input
Or, upload file	11 - P			1	I
		(Browse)			
Genetic code Job Title	Standard (1)		2500		
500 1100	8 sequences (gi 223585)4 Enter a descriptive title for		i044		
Blast 2 seque		Jour DLAST search 🕑			
Choose Sear	rch Set				
Database	Reference proteins (refse	q_protein) 😝 🥹			
Organism	Enter organism name or id	nomentations will be oursouts			
Optional			nly 20 top taxa will be shown. 🥥		
Entrez Query					
Optional	Enter an Entrez query to lir	nit search 🥹			
BLAST			(search protein databases	using a translated nucleotide qu	uery)
	☐ Show results in a new w	indow			
Algorithm param	neters		Note: Parameter value	es that differ from the default ar	e highlighted in yellow
			70		
			70		

BLAST		Basic Local Alignm	ent Search Tool	Му КСВІ
Home Rece	ent Results Saved Strategie	es Help		Welcome joannealisonfox. [Sign O
NCBI/ BLAST/ tblast	tn			
blastn blastp blas	sty tblastn tblastx			
Enter Query S	Sequence	TBLASTN search translated nuc	leotide subjects using a protein query. <u>more</u>	Reset page Bookmark
Enter accession	number, gi, or FASTA seque			
>gi 47271417 ref	NP_571332.2 hemoglobin alg KISPKADEIGAEALARMLTVYPOTKTYP	ha ad paste IIL	aal sequence	
AVSKIDDLVGGLAALSI KYR	ELHAFKLRVDPANFKILSHNVIVVIAMI	FPADFTPEVHVSVDKFFNNLALALSE	rion	
C	********	••	То	
Or, upload file			+	
Job Title	gi 47271417 ref NP_571332	Browse)	Use BLAST 2 S	equences for
	Enter a descriptive title for ye			•
Blast 2 sequer	nces		Searching ag	ainst small
Enter Subject	t Sequence		custom da	tabacac
				alaDaSES
	number, gi, or FASTA seque		ar Subject subrange 🐨	I
TTATATGCATTATGCA	ATCACGACTGTTGTTTACAGTGTACTC TTTCCATTTCTATCTATACAAAACTTC	rggaattgtgttatgctctct	From	
L			alman ESTa	
On unload file	9.9	paste s	almon ESTs	
Or, upload file		(Browse)		
BLAST		-	translated nucleotide subjects using a protein	query)
	Show results in a new wir	ndow		
Algorithm param	<u>eters</u>			
			72	

BLAST tasks

Basic BLAST
✓ Jurassic Park examples
Batch BLAST searching
✓ Use Salmon ESTs as input
Search against a small custom database
✓ Use BLAST 2 Sequences utility

Primer-BLAST


NCBI's Primer Designer and Specificity Checker http://www.ncbi.nlm.nih.gov/tools/primer-blast/

, Primer-BLAST

A tool for finding specific primers

NCBI/ Primer-BLAST: Finding primers specific to your PCR template (using Primer3 and BLAST). more... Tips for finding specific primers

Enter accession, gi, or FASTA		is preferred) 🥹 <u>Clear</u>	Range From To Forward primer	<mark>⊛</mark> <u>Clear</u>
Or, upload FASTA file	Choose File no file selec	sted		
Primer Parameters				
Use my own forward primer (5'->3' on plus strand)		O Clea	ar	
Use my own reverse primer			• · · ·	-
			- 4 4	· · · · · · · · · · · · · · · · · · ·
(5'->3' on minus strand)	Min Max	offers in	ntegrated prir	ner desigr
	Min Max 200 1000		0	0
PCR product size			ntegrated prini imer3 & spec	0
PCR product size	200 1000	with Pr	imer3 & spec	ificity
(5'->3' on minus strand) PCR product size # of primers to return Primer melting temperatures (T _m)	200 1000 10	with Pr	0	ificity
PCR product size # of primers to return Primer melting temperatures (T _m)	200 1000 10 Min Opt 57.0 60.0	with Pr	imer3 & spec	ificity
PCR product size # of primers to return Primer melting temperatures	200 1000 10 Min Opt 57.0 60.0 Decking Parameters	with Pr	imer3 & spec vith custom E	ificity

Primer Design

Balance:

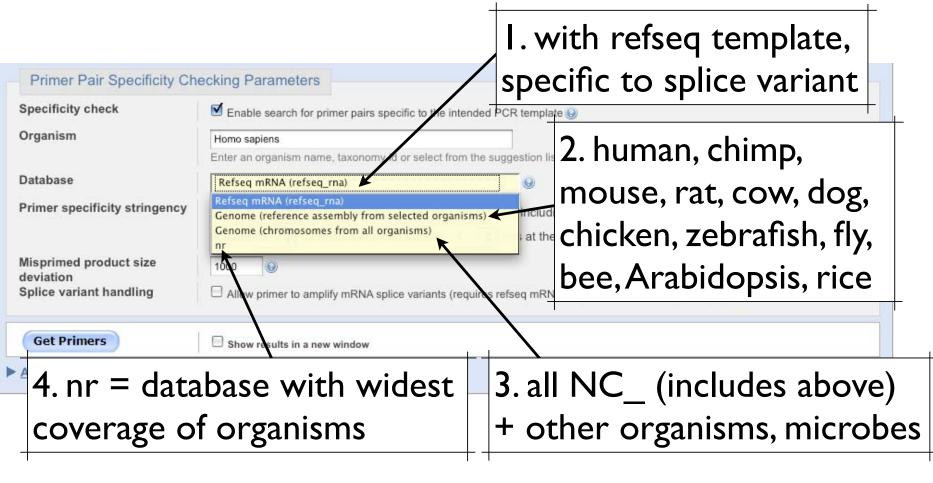
✓ Specificity - frequency of mispriming
 ✓ Efficiency of Amplification - 2X increase
 Consider:

- primer length (18-24nt)
- primer Tm (>54°C)
- 3' end (G or C)
- GC content (45-55%)

- primer dimers
- for cDNA coding region; across intron/ exon boundary

General Concepts for PCR Primer Design. Dieffenback CW, Lowe TMJ, Dveksler GS Genome Research 3 (1993) S30-37 [PMID:8118394]

Primer-BLAST input	
NCBI/ Primer-BLAST: Finding primers PCR Template Additional and unique in the target database	
Enter accession, gi, or FASTA sequence (A refseq record is preferred) (e) Clear Range Image: Security of the sequence of the se	
Primer Parameters Use my own fotward primer (5'->3' on plus strand) Use my own reverse primer (5'->3' on minus strand) PCR product size # of primers to return 10 Min Max Min Opt Min Opt Min Opt Min Opt 30 3	
Time melting temperatures 57.0 60.0 63.0 3 can specify primer sequence(s), desired product size, Tm ranges, Tm difference (can be used with or without template)	1


Primer-BLAST Specificity

By default human sequences are searched in specificity check

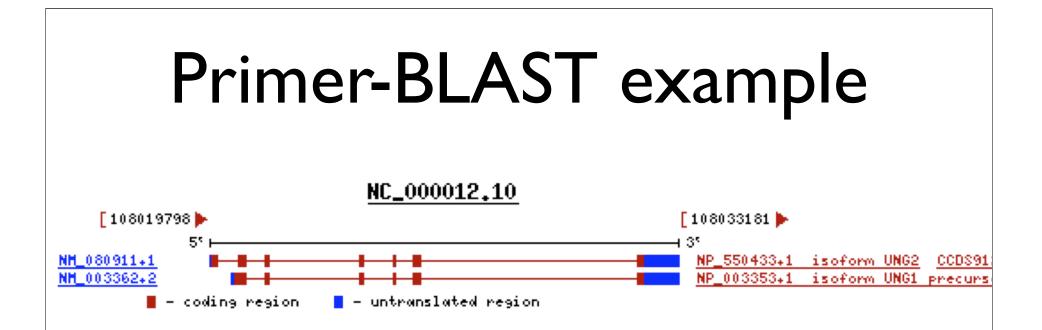
Specificity check	Enable search for primer pairs specific to the intended PCR template (g)
	With this option on, the program will search the primers against the selected database and determine whether a primer pair can generate a PCR product on any targets in the database based on their matches to the targets and their orientations. The program will return, if possible, only primer pairs that do not generate a valid PCR product on unintended sequences and are therefore specific to the intended template. Note that the specificity is checked not only for the forward-reverse primer pair, but also for forward-forward as well as reverse-reverse primer pairs.
Organism	Homo sapiens Enter an organism name, taxonomy id or select from the suggestion list as you type.
Database	Refseq mRNA (refseq_rna)
Primer specificity stringency	At least 2 + total mismatches to unintended targets, including at least 2 + mismatches within the last 5 + bps at the 3' end @
	The larger the mismatches (especially those toward 3' end) are between primers and the unintended targets, the more specific the primer pair is to your template (i.e., it will be difficult to anneal to and amplify unintended targets). However, specifying a larger mismatch value may make it more difficult to find such specific primers. Try to lower the mismatch value in such case.
	Yana in addit dada.
Misprimed product size deviation Splice variant handling	Custom BLAST; focus on 3' end to avoid mispriming

Primer-BLAST Specificity

Four BLAST nucleotide databases available for searching

Primer-BLAST Advanced

Advanced parameters

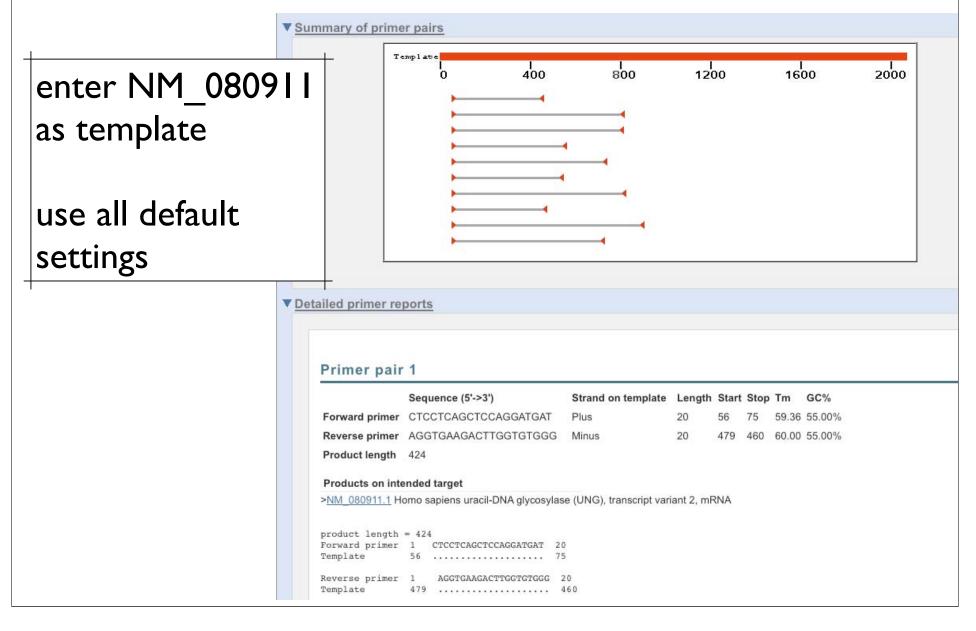

Primer Pair Specificity Checking Parameters Blast max number of hit sequences

1000 (default)

3000 (default)

Blast expect (E) value Max primer pairs to screen Adjustable settings from Primer3 see Primer 3 Input Help: http://fokker.wi.mit.edu/primer3/input-help-040.htm

Primer Parameters Opt Max Min Useful options specific PCR Product Tm Min Opt Max to Primer-BLAST: Primer Size 15 20 27 Min Max I. avoid regions that Primer GC content (%) 80.0 20.0 GC clamp 0 contain SNPs Max self complementarity: 8.00 Max 3' end complementarity: 3.00 🔞 2. avoid repetitive SNP handling Primer binding site may not contain known SNP Repeat filter + 0 Automatic regions Avoid repeat region for primer selection by filtering with re Low complexity filter Avoid low complexity region for primer selection Concentration of monovalent 50.0 cations Concentration of divalent 0.0 cations 0.0 Concentration of dNTPs Salt correction formula: Schildkraut and Lifson 1965 📑 😡 Annealing Oligo 50.0 Concentration



Task #1: Use Primer BLAST to design primers specific to the UNG2 splice variant, NM_080911.

Task #2: Use Primer BLAST to design primers that will identify both splice variants.

Task #3: Carry out a specificity check for one of your primer pairs. Will this primer pair (designed against the human UNG transcripts) also amplify transcripts from other primate species? 82

Task #1: Use Primer BLAST to design primers specific to the UNG2 splice variant, NM_080911.

Task #2: Use Primer BLAST to design primers that will identify both splice variants.

<u>illed primer re</u> Primer pair								enter NM_080911 as template
Forward primer Reverse primer Product length Products on inte > <u>NM_080911.1</u> Ho	948	Strand on template Plus Minus se (UNG), transcript var	20 20	460 1407	479 6	60.00	GC% 55.00% 55.00%	Allow primer to amplify mRNA splice variants
	CCCACACCAAGTCTTCACCT 460 CACCCCAACATCTGTCACTG 1407 wed transcript variants	479 20 1388					-	
> <u>NM_003362.2</u> He product length Forward primer Template Reverse primer Template	1 CCCACACCAAGTCTTCACCT 488	20 507 20	encodinș	g mitoci	nondria	il prote	in, transo	cript variant 1, mRNA

Task #3: Carry out a specificity check for one of your primer pairs. Will this primer pair (designed against the human UNG transcripts) also amplify transcripts from other primate species?

no template

use my own: forward primer reverse primer

organism; specify primate

Specify nr

Primer pair 1

	Sequence (5'->3')		Length	Tm	GC%
Forward primer	GCCTTGTTTTCTTG	CTCTGG	20	59.99	50.00%
Reverse primer	CACCCCAACATCT	GTCACTG	20	60.00	55.00%
Products on target t	•	alata ada, biablu similar ta Usura			and does (UNO) to consist union to a DNU
2 <u>AK291341.1</u> Homo s	apiens CDINA FLJ76645 COM	piete cos, nigniy similar to Home	o sapiens ura	cii-DINA giy	cosylase (UNG), transcript variant 1, mRN/
product length = 5 Forward primer 1 Template 84					
	CACCCCAACATCTGTCACTG				
> <u>XM_001136198.1</u> PF	REDICTED: Pan troglodytes u	ıracil-DNA glycosylase, transcri	ot variant 1 (U	ING), mRN	A
	95 GCCTTGTTTTCTTGCTCTGG 5				
	CACCCCAACATCTGTCACTG				
> <u>XM_509349.2</u> PRED	ICTED: Pan troglodytes urac	il-DNA glycosylase, transcript va	ariant 2 (UNG), mRNA	
product length = 5 Forward primer 1 Template 84					
	CACCCCAACATCTGTCACTG				
> <u>XM_001104421.1</u> PF	REDICTED: Macaca mulatta s	similar to uracil-DNA glycosylase	e isoform UN	G1 precurso	or, transcript variant 2 (LOC706816), mRN/
product length = 6 Forward primer 1 Template 86					

Things you can do to maximize the chance of finding primers specific for your template.

- Use refseq accession or GI (rather than the raw DNA sequence) as template whenever possible. Even if you are only interested in part of the sequence, you can still use the accession or GI but you do need to specify the range (use forward primer "From" field for your sequence start position and reverse primer "To" field for your sequence stop position). The reason is that an accession or GI carries accurate information about its identity which allows primer-blast to better distinguish between intended template and off-targets.
- Choose a non-redundant database (such as refseq_rna or genome database). The nr database contains redundant entries which can interfere with the process of finding specific primers.
- Specify an organism for database search if you are only amplifying DNA from a specific organism. Searching all organisms will be much slower and off-target priming from other organisms are irrelevant.

Credits

 Materials for this presentation have been adapted with permission from the following NCBI HelpDesk course materials:

Field Guide Course Materials

Advanced Workshop for Bioinformatics Information Specialists

NCBI News

NCBI BLAST

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi

MSA

MSA = Multiple Sequence Alignments

	😣 👄 🕀	📄 globin.aln
	CLUSTAL 2.0.9	multiple sequence alignment
Evomplac	HBB_HUMAN HBB_HORSE HBA_HUMAN HBA_HORSE GLB5_PETMA MYG_PHYCA LGB2_LUPLU	 VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLST VQLSGEEKAAVLALWDKVNEEEVGGEALGRLLVVYPWTQRFFDSFGDLSN VLSPADKTNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHF-DLS- PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKFKGLTT VLSEGEWQLVLHVWAKVEADVAGHGQDILIRFFSTPAAQEFFPKFKLKT GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE *: * * . : * : * : * : * : * : * : * : *
Examples	HBB_HUMAN HBB_HORSE HBA_HUMAN HBA_HORSE GLB5_PETMA MYG_PHYCA LGB2_LUPLU	PDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRL PGAVMGNPKVKAHGKKVLHSFGEGVHHLDNLKGTFAALSELHCDKLHVDPENFRL HGSAQVKGHGKKVADALTNAVAHVDDHPNALSALSDLHAHKLRVDPVNFKL ADQLKKSADVRWHAERIINAVGHDV-EKISMKLRDLSGKHAKSFQVDPQYFKV EAEMKASEDLKKHGVTVLTALGAILKKGHHEAELKPLAQSHATKHKIPIKVLEF VPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-VADAHFPV : *. : : : : *. :
ClustalX 2.0.9	HBB_HUMAN HBB_HORSE HBA_HUMAN HBA_HORSE GLB5_PETMA MYG_PHYCA	LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH LGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR LAAVIADTVAAGDAGFEKLMSMICILLRSAY ISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
	LGB2_LUPLU	VKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA
ode: Multiple Alignment Mode 🛟 Font: 10 🛟	+	
HBB HUMAN		

Multiple Sequence Alignment

VTISCTGSSSNIGAG-NHVKWYQQLPG VTISCTGTSSNIGS--ITVNWYQQLPG LRLSCSSSGFIFSS--YAMYWVRQAPG LSLTCTVSGTSFDD--YYSTWVRQPPG PEVTCVVVDVSHEDPQVKFNWYVDG--ATLVCLISDFYPGA--VTVAWKADS--Sequ AALGCLVKDYFPEP--VTVSWNSG---Sa

The sole purpose of multiple sequence alignments is to place homologous positions of homologous sequences into the same column.

Clustal

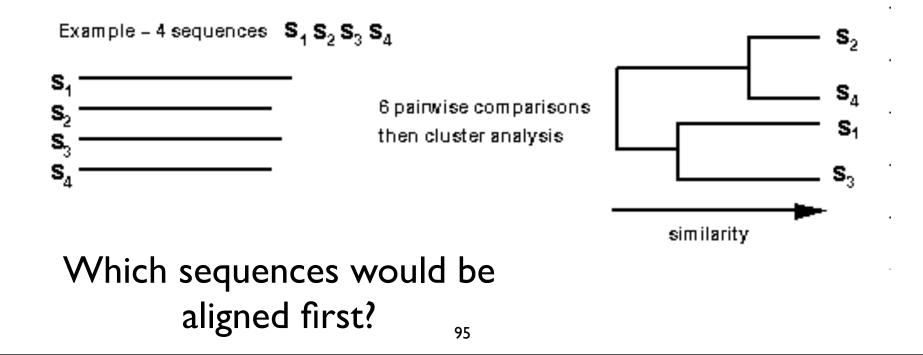
- Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994)
 - CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice.
 - Nucleic Acids Research, 22:4673-4680.

Differences between CLUSTAL and BLAST?

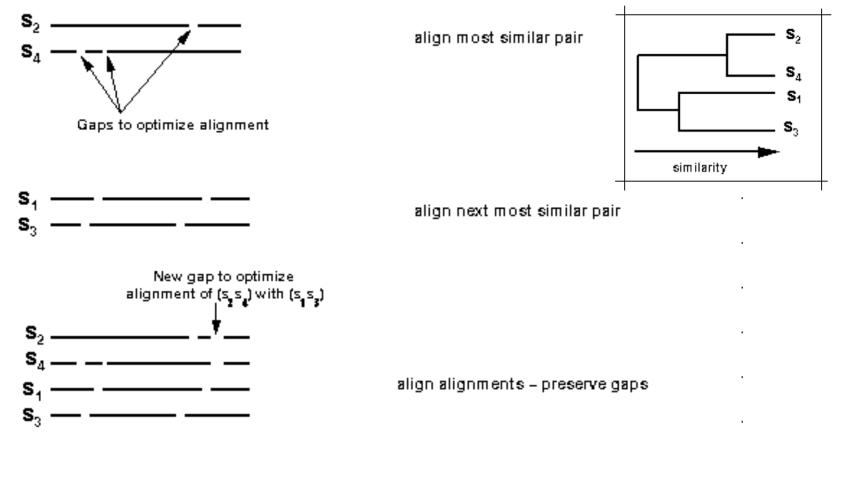
<u>CLUSTAL</u>

- global alignment method
 - Align complete sequence
- Assumes homology
- Complex gap penalties
- Slower
- Align protein-protein or nucleotide-nucleotide only

<u>BLAST</u>


- local alignment method
 - Search for HSP
- Test for homology
- Simple gap penalties
- Fast
- Translated searches

CLUSTAL Algorithm Steps


- I. Pairwise alignment of each sequence pair
 - Number of comparisons depends on how many sequences
- 2. Compute distance matrix
 - Percent non-identity between each alignment pair
 - Lower distance means more similar
- 3. Construct a sequence similarity tree
 - Cluster sequences according to distance (similarity)
- 4. Progressive alignment of sequences according to a tree

How does the Clustal algorithm actually work?

(A) Pairwise Alignment

Steps in a Multiple Sequence Alignment continued ... (B) Multiple alignment following the tree from A

Position Specific Gap Penalities

- There are two type of gap opening penalities: gap opening and gap extension
 - Determined empirically by user
- Decrease penalties where gaps already occurs
- Increase penalties in adjacent positions to where gap already occurs
 - Encourage extension of gaps in loop regions vs. introduction of new gaps
- Increase or decrease gap penalties according to amino acid type
 - Increase penalties in stretches of hydrophobic residues

Gap Penalties Example

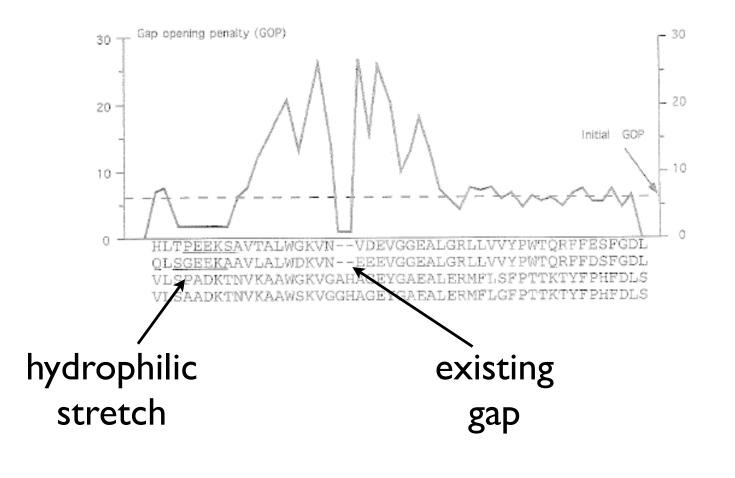


Figure from Higgens et al, Methods in Enzymology 266: 383

Standard Multiple Sequence Alignment Approach

- Be as sure as possible that the sequences included are homologous
- Know as much as possible about the gene/ protein in question before trying to create an alignment (secondary structure, domains etc..)
- Start with an automated alignment: preferably one that utilizes some evolutionary theory such as CLUSTAL

http://www.ebi.ac.uk/Tools/clustalw2/index.html

EMBL-EBI	EB-eye All Databases	Enter Text He	re		et ? Give us anced Search
Databases Tools	EBI Groups Tra	ining Industry	About Us He	elp	Site Index 🔊 着
Help Index	EBI > Tools > Sequence	Analysis > ClustalW2			
General Help	ClustalW2				
Formats					
Gaps			ence alignment prograr gnments of divergent se		
 Matrix References 	for the selected seque	nces, and lines them up	so that the identities, si	imilarities and differ	
= ClustalW2 Help	New users, please rea		ewing Cladograms or Ph	nylograms.	
ClustalW2 FAQ	>> Download Softwar				
 Jalview Help 	٢				
Scores Table					
Alignment	YOUR EMAIL	ALIGNMENT TITLE	RESULTS	ALIGNMENT	
Guide Tree		Sequence	interactive 🛟	full 🛟	
Colours	KTUP	WINDOW	SCORE TYPE	TOPDIAG	PAIRGAP
 Similar Applications 	(WORD SIZE)	LENGTH			
Align	def 🗘	def 🗘	percent 🗘	def 🗘	def 🗘
Kalign	MATRIX	GAP OPEN	NO END GAPS	GAP EXTENSION	GAP DISTANCES
MAFFT	def 🗘	def 🛟	yes 🗘	def 🛟	def 🛟
MUSCLE	dei 🗸		yes 🔻		
···T-Coffee		ITERATION		NUMITE	
- ClustelW Programmetic		none 🗘		1	
 ClustalW Programmatic Access 	OUTP			GENETIC TREE	
	OUTPUT FORMAT	OUTPUT TRE ORDER	E TYPE CORRECT DI	ST. IGNORE GAP	S CLUSTERING
www.clustal.org			ne 🗘 🛛 off 🗘	off 🛟	NJ 🛟
	an wynambers				
Clustal Related Vision Clusta					
Search for Clustal related	Enter or paste a set of	of sequences in any sup	oported format:		Help
literature in Medline			100		

http://www.ebi.ac.uk/Tools/muscle/index.html

EMBL-EBI	B-eve All Databases Content Text Here Go Reset () Advanced Search Give us feedback
Databases Tools	EBI Groups Training Industry About Us Help Site Index 🔂 🎒
 Help Index General Help 	EBI > Tools > Sequence Analysis
 General Help Formats 	MUSCLE
 Formats Gaps Matrix References Muscle Help Jalview Help 	MUSCLE stands for MU Itiple Sequence Comparison by Log-Expectation. MUSCLE is claimed to achieve both better average accuracy and better speed than <u>ClustalW2</u> or <u>T-Coffee</u> , depending on the chosen options.
 Similar Applications 	RESULTS SEARCH TITLE YOUR EMAIL
⊡Align ⊡ClustalW2	interactive 🔹 Sequence
Kalign	OUTPUT FORMAT OUTPUT TREE OUTPUT ORDER
MAFFT T-Coffee	FASTA \$ aligned \$
Muscle Programmatic	Enter or Paste a set of Sequences in any supported format:
Access	
	Upload a file: Choose File no file selected Run Reset
	101

http://www.ebi.ac.uk/Tools/t-coffee/index.html

EMBL-EBI	EB-eye All Databases Enter Text Here Go Reset ? Give us Advanced Search Go Reset ?							
Databases Tools	EBI Groups Training Industry About Us Help Site Index 🔂 着							
 Help Index Coporal Halp 	EBI > Tools > Sequence Analysis							
 General Help Formats 	T-Coffee							
 Gaps Matrix References TCoffee Help Jalview Help Alignment Guide Tree 	T-Coffee is a multiple sequence alignment program. Multiple sequence alignment programs are meant to align a set of sequences previously gathered using other programs such as blast, fast, sw The main characteristic of T-Coffee is that it will allow you to combine results obtained with several alignment methods. For instance if you have an alignment coming from <u>ClustalW2</u> , an other alignment coming from Dialign, and a structural alignment of some of your sequences, T-Coffee will combine all that information and produce a new multiple sequence having the best agreement whith all these methods. By default, T-Coffee will compare all you sequences two by two, producing a global alignment and a series of local alignments (using lalign). The program will then combine all these alignments into a multiple							
= Colours	alignment.							
 Similar Applications Align ClustalW2 Kalign 	EMAIL RESULTS RUN NAME MATRIX ORDER interactive interactive Sequence none aligned							
MAFFT MUSCLE	Enter or Paste a set of Sequences in any supported format:							
T-Coffee Programmatic Access								
T-Coffee Related								
Search for T-Coffee related literature in Medline more	Upload a file: Choose File no file selected Run Reset							
	102							

Standard Multiple Sequence Alignment Approach

Examine alignment:

- Are you confident that aligned residues/bases evolved from a common ancestor?
- Are domains of the proteins/predicted secondary structures, etc. aligning correctly?
- Are most indels outside of known motifs or secondary structure?

 \rightarrow No? May need to edit sequences and redo...

The Take Home Message

Why perform an MSA?

- Visualize trends between homologous sequences
 - Shared regions of homology
 - Regions unique to a sequence within a family
 - Consensus sequence
- As the first step in a phylogenetic analysis

The Take Home Message

How does one perform an MSA?

- By hand: too hard!
- Automated alignment: Fast, but doesn't necessarily produce the "correct" alignment

Best approach = Automated alignment with manual editing

MSA

PRACTICAL EXERCISE: Comparing Sets of Protein Sequences

navigate to: bioteach.ubc.ca/bioinfo2009

AMBL I The Educational Facilities of the Michael Smith Labs

globin.txt

AMBL

LABORATORY

Clustal

hubberry half a subless sublets

ode: Multiple Alignment Mode 🚺 Font: 10

install + do MSA #I
together
1

globin.al

We'll walk through

CLUSTAL 2.0.9	multiple sequence alignment
HBB_HUMAN HBB_HORSE HBA_HUMAN HBA_HORSE B5_PETMA 6_PHYCA GB2_LUPLU	
HBB_HUMAN HBB_HORSE HBA_HUMAN HBA_HORSE GLB5_PETMA MYG_PHYCA LGB2_LUPLU	PDAVMONPKVKAHOKKVLGAFSOGLAHLDNLKGTFATLSELHCDKLHVDPENFEL PDAVMONPKVKAHOKKVLHSFGEGVHHLDNLKGTFATLSELHCDKLHVDPENFEL HGSAQVKAHOKOHKXVDALTLAVAHDDOLPATLSALSULHAHLEVDPVNFKL HGSAQVKAHOKVODALTLAVGHLDDEKTSMKLSDLSAHAKSFQVDPVFKV ADQLKSSADVRHAERITINAVIDAVASHDDTEKTSMKLBDLSOHAKSFQVDPVFKV EAERKASEDLKSHOTVUTALGALLKKSCHHEAELFVLQSHNKKS-VADAHFPV VPQMPELQAHAKVFKLVFEAATQLQVTGVVVTDATLDLGSVHVSG-VADAHFPV
HBB_HUMAN HBB_HORSE HBA_HUMAN HBA_HORSE GLB5_PETMA MYG_PHYCA LGB2_LUPLU	LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHXYH LGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHXYH LSHCLUTLAHAP.ERFTPANHASLOKFLASIVVITUSYR LSHCLULSTLAHNLPNDFTPAVHASLOKFLSSVSTVLTSK/R LGAVIADTVAAG
	HBB_HUMAN HBB_HORSE HBA_HUMAN HBA_HORSE B5_PETMA G52_LUPLU HBB_HUMAN HBB_HORSE HBA_HUMAN HBA_HORSE GLBB_PETMA HBB_HORSE HBA_HUMAN HBB_HORSE HBA_HUMAN HBB_HORSE HBA_HUMAN HBB_HORSE

Install ClustalX on laptop

the a fly on

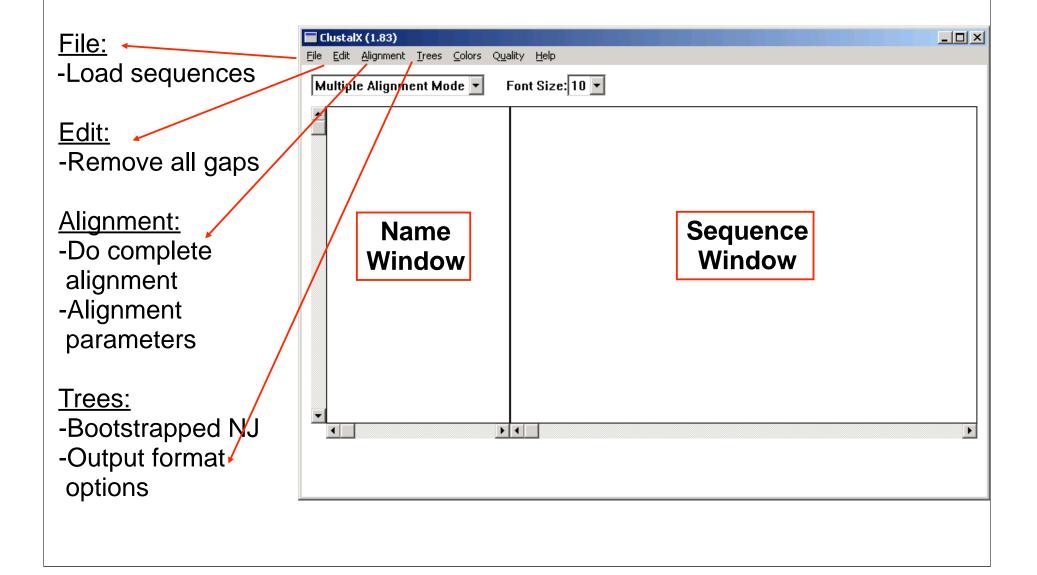
download program and install

Use ClustalX to generate MSA

MSA #1: Use example sequences to generate alignment

MSA #2: Use your own

sequences



Open ClustalX

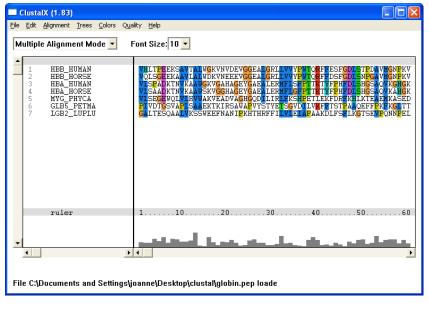
Clustalx.exe

ClustalX (1.83)	
Eile Edit Alignment Irees Colors Quality Help	
Multiple Alignment Mode 🔻 Font Size: 10 💌	
	J

Starting up ClustalX

📕 globin.pep - WordPad

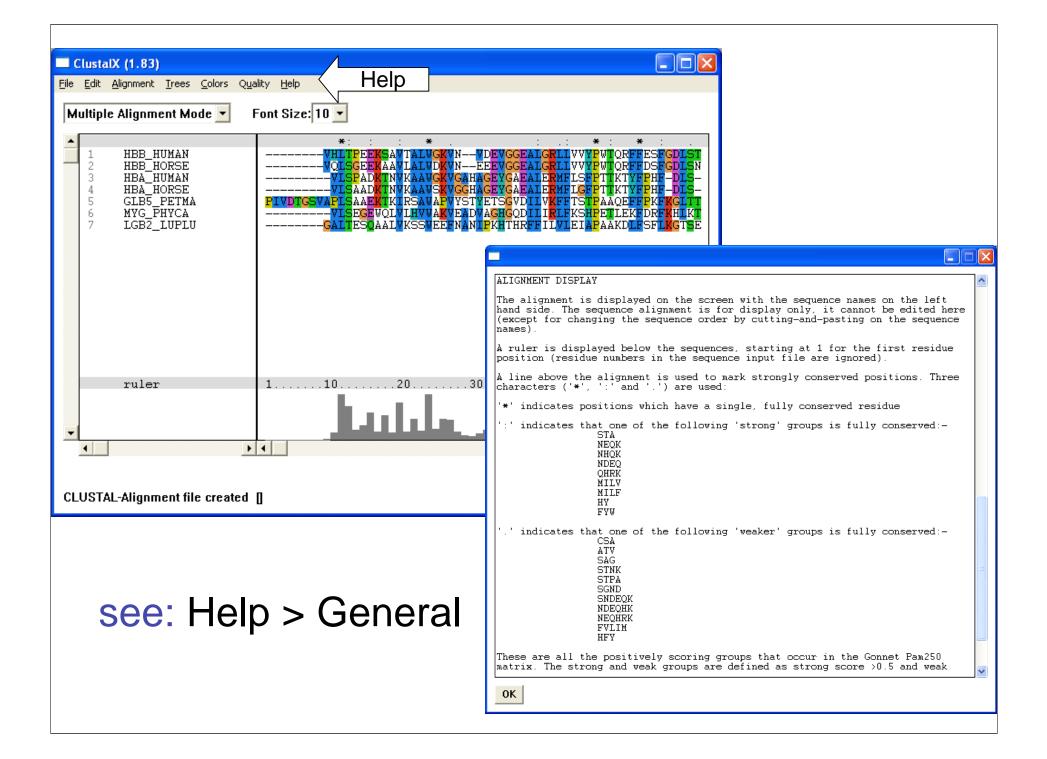
🗅 📂 🔲 🎒 🗟 🛤


File Edit View Insert Format Help @efax

>P1;HBB HUMAN Sw:Hbb Human => HBB HUMAN VHLTPEEKSA VTALWGKVNV DEVGGEALGR LLVVYPWTOR FFESFGDLST PDAVMGNPKV KAHGKKVLGA FSDGLAHLDN LKGTFATLSE LHCDKLHVDP ENFRLLGNVL VCVLAHHFGK EFTPPVQAAY QKVVAGVANA LAHKYH* C; ID HBB HUMAN STANDARD; PRT: 146 AA. PO2023; C;AC C:DT 21-JUL-1986 (REL. 01, CREATED) C:DT 21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE) C;DT 01-APR-1993 (REL. 25, LAST ANNOTATION UPDATE) C:DE HEMOGLOBIN BETA CHAIN. . . . >P1;HBB HORSE Sw:Hbb Horse => HBB HORSE VOLSGEEKAA VLALUDKVNE EEVGGEALGR LLVVYPUTQR FFDSFGDLSN PGAVMGNPKV KAHGKKVLHS FGEGVHHLDN LKGTFAALSE LHCDKLHVDP ENFRLLGNVL VVVLARHFGK DFTPELQASY QKVVAGVANA LAHKYH* C;ID HBB HORSE STANDARD; PRT; 146 AA. C:AC PO2062; C;DT 21-JUL-1986 (REL. 01, CREATED) C;DT 21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE) 01-MAR-1992 (REL. 21, LAST ANNOTATION UPDATE) C:DT HEMOGLOBIN BETA CHAIN. . . . C:DE >P1;HBA HUMAN Sw:Hba Human => HBA HUMAN VLSPADKTNV KAAWGKVGAH AGEYGAEALE RMFLSFPTTK TYFPHFDLSH GSAQVKGHGK KVADALTNAV AHVDDMPNAL SALSDLHAHK LRVDPVNFKL LSHCLLVTLA AHLPAEFTPA VHASLDKFLA SVSTVLTSKY R* HBA HUMAN C;ID STANDARD; PRT: 141 AA. PO1922; C;AC C:DT 21-JUL-1986 (REL. 01, CREATED) C:DT 21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE) 01-FEB-1994 (REL. 28, LAST ANNOTATION UPDATE) C;DT C:DE HEMOGLOBIN ALPHA CHAIN. . . . >P1;HBA HORSE Sw:Hba Horse => HBA HORSE VLSAADKTNV KAAWSKVGGH AGEYGAEALE RMFLGFPTTK TYFPHFDLSH GSAQVKAHGK KVGDALTLAV GHLDDLPGAL SNLSDLHAHK LRVDPVNFKL LSHCLLSTLA VHLPNDFTPA VHASLDKFLS SVSTVLTSKY R* C;ID HBA HORSE STANDARD: PRT: 141 AA. C:AC PO1958; C:DT 21-JUL-1986 (REL. 01, CREATED) C;DT 21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE) C:DT 01-MAR-1992 (REL. 21, LAST ANNOTATION UPDATE) C:DE HEMOGLOBIN ALPHA CHAINS (SLOW AND FAST)

B

羔 �� 🛱 🗠


Load the sequences –globin.pep

Alignment > Do Complete Alignment

ClustalX (1.83)		
File Edit Alignment Trees Colo	ors Quality Help	
Multiple Alignment Mode 💌 Font Size: 10 💌		
▲ 1 HBB_HUMAN 2 HBB_HORSE 3 HBA_HUMAN 4 HBA_HORSE 5 MYG_PHYCA 6 GLB5_PETMA 7 LGB2_LUPLU	VHLTPEEKSAVTALWGKVNVDEVGGEALGRILVVYPWTORFFESFGDLSTPDAVMGNPKV VQLSGEEKAAVLALWDKVNEEEVGGEALGRILVVYPWTORFFDSFGDLSNPGAVMGNPKV Complete Alignment Output Guide Tree File: I Settings\joanne\Desktop\clustal\globin.dnd Output Alignment Files: Clustal: d Settings\joanne\Desktop\clustal\globin.alr	
ruler	ALIGN CANCEL	
File C:\Documents and Settings\joanne\Desktop\clustal\globin.pep loade		

also see: Alignment > Alignment Parameters

Expasy Proteomics Server

Search ExPASy

for

EXPASy

Site Map

ExPASy Proteomics Server

Search

The ExPASy (Expert Protein Analysis System) proteomics server of the Swiss Institute of Bioinformatics (SIB) is dedicated to the analysis of protein sequences and structures as well as 2-D PAGE (Disclaimer / References / Linking to ExPASy).

Go

Clear

Contact us

[Databases] [Tools & Software] [Education & Services] [Links] [Announcements] [Mirror Sites] [Job openings]

Databases	Tools and software packages	
 UniProt Knowledgebase (Swiss-Prot and TrEMBL) - Protein knowledgebase ViralZone - Portal to viral UniProtKB/Swiss-Prot entries new PROSITE - Protein families and domains SWISS-2DPAGE - Two-dimensional polyacrylamide gel electrophoresis World-2DPAGE Repository - A public standards- compliant repository for gel-based proteomics data published in the literature MIAPEGeIDB - A public repository for MIAPE Gel electrophoresis documents ENZYME - Enzyme nomenclature UniPathway - Metabolic pathways SWISS-MODEL Repository - Automatically generated protein models 	 Proteomics and sequence analysis tools Identification and characterization (Aldente, FindMod, Popitam, Phenyx, pl/Mw, ProtParam DNA -> Protein Similarity searches (BLAST) Pattern and profile searches (ScanProsite) Post-translational modification and topology prediction Primary structure analysis Secondary and tertiary structure tools (Swiss-PdbViewer) Alignment and Phylogenetic analysis Melanie / ImageMaster - Software for 2-D PAGE analysis MSight - Mass Spectrometry Imager Roche Applied Science's Biochemical Pathways 	

Let's start at 9:00am

Genome Browsers GEO - gene expression omnibus Pathway Resources for Systems Biology

